2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How do arbuscular mycorrhizas affect reproductive functional fitness of host plants?

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arbuscular mycorrhizal (AM) symbiosis in soil may be directly or indirectly involved in the reproductive process of sexually reproducing plants (seed plants), and affect their reproductive fitness. However, it is not clear how underground AM symbiosis affects plant reproductive function. Here, we reviewed the studies on the effects of AM symbiosis on plant reproductive fitness including both male function (pollen) and female function (seed). AM symbiosis regulates the development and function of plant sexual organs by affecting the nutrient using strategy and participating in the formation of hormone networks and secondary compounds in host plants. The nutrient supply (especially phosphorus supply) of AM symbiosis may be the main factor affecting plant's reproductive function. Moreover, the changes in hormone levels and secondary metabolite content induced by AM symbiosis can also affect host plants reproductive fitness. These effects can occur in pollen formation and transport, pollen tube growth and seed production, and seedling performance. Finally, we discuss other possible effects of AM symbiosis on the male and female functional fitness, and suggest several additional factors that may be involved in the influence of AM symbiosis on the reproductive fitness of host plants. We believe that it is necessary to accurately identify and verify the mechanisms driving the changes of reproductive fitness of host plant in symbiotic networks in the future. A more thorough understanding of the mechanism of AM symbiosis on reproductive function will help to improve our understanding of AM fungus ecological roles and may provide references for improving the productivity of natural and agricultural ecosystems.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology.

          Land-adapted plants appeared between about 480 and 360 million years ago in the mid-Palaeozoic era, originating from charophycean green algae. The successful adaptation to land of these prototypes of amphibious plants - when they emerged from an aquatic environment onto the land - was achieved largely by massive formation of "phenolic UV light screens". In the course of evolution, plants have developed the ability to produce an enormous number of phenolic secondary metabolites, which are not required in the primary processes of growth and development but are of vital importance for their interaction with the environment, for their reproductive strategy and for their defense mechanisms. From a biosynthetic point of view, beside methylation catalyzed by O-methyltransferases, acylation and glycosylation of secondary metabolites, including phenylpropanoids and various derived phenolic compounds, are fundamental chemical modifications. Such modified metabolites have altered polarity, volatility, chemical stability in cells but also in solution, ability for interaction with other compounds (co-pigmentation) and biological activity. The control of the production of plant phenolics involves a matrix of potentially overlapping regulatory signals. These include developmental signals, such as during lignification of new growth or the production of anthocyanins during fruit and flower development, and environmental signals for protection against abiotic and biotic stresses. For some of the key compounds, such as the flavonoids, there is now an excellent understanding of the nature of those signals and how the signal transduction pathway connects through to the activation of the phenolic biosynthetic genes. Within the plant environment, different microorganisms can coexist that can establish various interactions with the host plant and that are often the basis for the synthesis of specific phenolic metabolites in response to these interactions. In the rhizosphere, increasing evidence suggests that root specific chemicals (exudates) might initiate and manipulate biological and physical interactions between roots and soil organisms. These interactions include signal traffic between roots of competing plants, roots and soil microbes, and one-way signals that relate the nature of chemical and physical soil properties to the roots. Plant phenolics can also modulate essential physiological processes such as transcriptional regulation and signal transduction. Some interesting effects of plant phenolics are also the ones associated with the growth hormone auxin. An additional role for flavonoids in functional pollen development has been observed. Finally, anthocyanins represent a class of flavonoids that provide the orange, red and blue/purple colors to many plant tissues. According to the coevolution theory, red is a signal of the status of the tree to insects that migrate to (or move among) the trees in autumn. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell and developmental biology of arbuscular mycorrhiza symbiosis.

            The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoids as developmental regulators.

              Flavonoids, usually regarded as dispensable phytochemicals derived from plant secondary metabolism, play important roles in the biology of plants by affecting several developmental processes. Bioactive flavonoids also signal to microbes, serve as allelochemicals and are important nutraceuticals in the animal diet. Despite the significant progress made in identifying flavonoid pathway genes and regulators, little is currently known about the protein targets of flavonoids in plant or animal cells. Recently, there have been advances in our understanding of the roles that flavonoids play in developmental processes of plants. The multiple cellular roles of flavonoids can reflect their chemical diversity, or might suggest the existence of cellular targets shared between many of these seemingly disparate processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 August 2022
                2022
                : 13
                : 975488
                Affiliations
                School of Environment, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University , Changchun, China
                Author notes

                Edited by: Raffaella Balestrini, National Research Council (CNR), Italy

                Reviewed by: Philipp Franken, Friedrich Schiller University Jena, Germany; Marcela Claudia Pagano, Federal University of Minas Gerais, Brazil

                *Correspondence: Zhanhui Tang tangzh789@ 123456nenu.edu.cn

                This article was submitted to Plant Symbiotic Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.975488
                9441947
                c4d8dfbf-3954-45c7-8e98-796b837ba870
                Copyright © 2022 Wang and Tang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 June 2022
                : 05 August 2022
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 90, Pages: 11, Words: 9227
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 31470446
                Award ID: 31960228
                Categories
                Plant Science
                Systematic Review

                Plant science & Botany
                arbuscular mycorrhizas,sexual reproduction,male fitness,female fitness,nutrient supply,pollen,seeds

                Comments

                Comment on this article