16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The Where, What and Why of the Developing Renal Stroma

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, a great deal has been learnt about the molecular regulation of kidney development. While most research has focused on the molecular regulation of ureteric branching morphogenesis and nephron formation, significant insights into the definition and functions of the renal stroma have emerged. Many molecules expressed in the developing renal stroma are now known to play significant regulatory roles in kidney development. However, the term ‘renal stroma’ continues to have different meanings to different researchers. This review clarifies this situation and defines the derivation, location and functions of the stroma in the developing metanephros.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Cell lineage analysis reveals multipotency of some avian neural crest cells.

          A major question in developmental biology is how precursor cells give rise to diverse sets of differentiated cell types. In most systems, it remains unclear whether the precursors can form many or all cell types (multipotent or totipotent), or only a single cell type (predetermined). The question of cell lineage is central to the neural crest because it gives rise to numerous and diverse derivatives including peripheral neurons, glial and Schwann cells, pigment cells, and cartilage. Although the sets of derivatives arising from different populations of neural crest cells have been well-documented, relatively little is known about the developmental potentials of individual neural crest cells. We have iontophoretically microinjected the vital dye, lysinated rhodamine dextran (LRD) into individual dorsal neural tube cells to mark unambiguously their descendants. Many of the resulting labelled clones consisted of multiple cell types, as judged by both their location and morphology. Cells as diverse as sensory neurons, presumptive pigment cells, ganglionic supportive cells, adrenomedullary cells and neural tube cells were found within individual clones. Our results indicate that at least some neural crest cells are multipotent before their departure from the neural tube.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2.

            Metanephric mesenchyme gives rise to both the epithelial cells of the nephron and the stromal cells of the mature kidney. The function of the stroma. in kidney morphogenesis is poorly understood. We have generated mice with a null mutation in the Winged Helix (WH) transcription factor BF-2 to examine its function during development. BF-2 expression within the developing kidney is restricted to the stromal cell lineage. Homozygotes die within the first 24 hr after birth with abnormal kidneys. Mutant kidneys are small, fused longitudinally, and rotated 90 degrees ventrally. Histological examination reveals a smaller collecting system, numerous large condensations of mesenchyme, and a decrease in the number of nephrons. Using molecular markers we show that induction and condensation of the nephrogenic mesenchyme occurs normally in mutant. The disruption of BF-2 reduces the rate of differentiation of the condensed mesenchyme into tubular epithelium, as well as the rate of growth and branching of the ureter and collecting system. Our findings demonstrate that BF-2 and stromal cells have essential functions during kidney morphogenesis. Furthermore, they suggest that BF-2 controls the production, by the stroma, of signals or factors that are required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice.

              Retinoic acid (RA) plays a critical role in normal development, growth, and maintenance of certain tissues. The action of RA is thought to be mediated in part by the three nuclear receptors (RAR alpha, -beta, and -gamma), each of which is expressed as multiple isoforms. To investigate the function of the RAR alpha gene, we have disrupted, in the mouse, the whole gene or the isoform RAR alpha 1. Although RAR alpha 1 is the predominant isoform and is highly conserved among vertebrates, RAR alpha 1-null mice appeared normal. However, targeted disruption of the whole RAR alpha gene resulted in early postnatal lethality and testis degeneration. These results, showing that RAR alpha is indeed involved in the transduction of the RA signal, also suggest an unexpected genetic redundancy.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2005
                January 2005
                14 January 2005
                : 99
                : 1
                : e1-e8
                Affiliations
                Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
                Article
                81792 Nephron Exp Nephrol 2005;99:e1–e8
                10.1159/000081792
                15637462
                c520a35b-a23f-44ce-b252-5a632faa526a
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 12 March 2004
                : 03 June 2004
                Page count
                Figures: 1, References: 57, Pages: 1
                Categories
                Minireview

                Cardiovascular Medicine,Nephrology
                Interstitium,Branching morphogenesis,Stroma,Nephrogenesis
                Cardiovascular Medicine, Nephrology
                Interstitium, Branching morphogenesis, Stroma, Nephrogenesis

                Comments

                Comment on this article