25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The genetics of depression: successful genome-wide association studies introduce new challenges

      research-article
      , ,
      Translational Psychiatry
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent successful genome-wide association studies (GWASs) for depression have yielded more than 80 replicated loci and brought back the excitement that had evaporated during the years of negative GWAS findings. The identified loci provide anchors to explore their relevance for depression, but this comes with new challenges. Using the watershed model of genotype–phenotype relationships as a conceptual aid and recent genetic findings on other complex phenotypes, we discuss why it took so long and identify seven future challenges. The biggest challenge involves the identification of causal mechanisms since GWAS associations merely flag genomic regions without a direct link to underlying biological function. Furthermore, the genetic association with the index phenotype may also be part of a more extensive causal pathway (e.g., from variant to comorbid condition) or be due to indirect influences via intermediate traits located in the causal pathways to the final outcome. This challenge is highly relevant for depression because even its narrow definition of major depressive disorder captures a heterogeneous set of phenotypes which are often measured by even more broadly defined operational definitions consisting of a few questions (minimal phenotyping). Here, Mendelian randomization and future discovery of additional genetic variants for depression and related phenotypes will be of great help. In addition, reduction of phenotypic heterogeneity may also be worthwhile. Other challenges include detecting rare variants, determining the genetic architecture of depression, closing the “heritability gap”, and realizing the potential for personalized treatment. Along the way, we identify pertinent open questions that, when addressed, will advance the field.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Evaluating the potential role of pleiotropy in Mendelian randomization studies

          Abstract Pleiotropy, the phenomenon of a single genetic variant influencing multiple traits, is likely widespread in the human genome. If pleiotropy arises because the single nucleotide polymorphism (SNP) influences one trait, which in turn influences another (‘vertical pleiotropy’), then Mendelian randomization (MR) can be used to estimate the causal influence between the traits. Of prime focus among the many limitations to MR is the unprovable assumption that apparent pleiotropic associations are mediated by the exposure (i.e. reflect vertical pleiotropy), and do not arise due to SNPs influencing the two traits through independent pathways (‘horizontal pleiotropy’). The burgeoning treasure trove of genetic associations yielded through genome wide association studies makes for a tantalizing prospect of phenome-wide causal inference. Recent years have seen substantial attention devoted to the problem of horizontal pleiotropy, and in this review we outline how newly developed methods can be used together to improve the reliability of MR.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rare and common variants: twenty arguments.

            Genome-wide association studies have greatly improved our understanding of the genetic basis of disease risk. The fact that they tend not to identify more than a fraction of the specific causal loci has led to divergence of opinion over whether most of the variance is hidden as numerous rare variants of large effect or as common variants of very small effect. Here I review 20 arguments for and against each of these models of the genetic basis of complex traits and conclude that both classes of effect can be readily reconciled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of 15 genetic loci associated with risk of major depression in individuals of European descent

              Despite strong evidence supporting the heritability of Major Depressive Disorder, previous genome-wide studies were unable to identify risk loci among individuals of European descent. We used self-reported data from 75,607 individuals reporting clinical diagnosis of depression and 231,747 reporting no history of depression through 23andMe, and meta-analyzed these results with published MDD GWAS results. We identified five independent variants from four regions associated with self-report of clinical diagnosis or treatment for depression. Loci with pval<1.0×10−5 in the meta-analysis were further analyzed in a replication dataset (45,773 cases and 106,354 controls) from 23andMe. A total of 17 independent SNPs from 15 regions reached genome-wide significance after joint-analysis over all three datasets. Some of these loci were also implicated in GWAS of related psychiatric traits. These studies provide evidence for large-scale consumer genomic data as a powerful and efficient complement to traditional means of ascertainment for neuropsychiatric disease genomics.
                Bookmark

                Author and article information

                Contributors
                00-31-50-3611242 , j.ormel@umcg.nl
                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group UK (London )
                2158-3188
                15 March 2019
                15 March 2019
                2019
                : 9
                : 114
                Affiliations
                ISNI 0000 0004 0407 1981, GRID grid.4830.f, Departments of Epidemiology and Psychiatry, University Medical Center Groningen, , University of Groningen, ; Groningen, The Netherlands
                Author information
                http://orcid.org/0000-0002-5463-037X
                Article
                450
                10.1038/s41398-019-0450-5
                6420566
                30877272
                c57106bd-0dec-4d24-8f9b-0c5442d2ec1c
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 January 2019
                : 13 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Clinical Psychology & Psychiatry
                Clinical Psychology & Psychiatry

                Comments

                Comment on this article