15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photoinduced Oxidation of Antimony(III) in the Presence of Humic Acid

      , ,
      Environmental Science & Technology
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interactions of antimony with natural organic matter (NOM) are important for the fate of Sb in aquatic systems. The kinetics of the photosensitized oxidation of Sb(III) to Sb(V) in the presence of Suwannee River Humic Acid (SRHA) was investigated using UV-A and visible light (medium-pressure mercury lamp). At a concentration of 5 mg L(-1) dissolved organic carbon (DOC) the light-induced reaction was 9000 times faster (rate coefficient k(exp) = 7.0 +/- 0.05 x 10(-4) s(-1)) than the dark reaction and followed pseudo-first-order kinetics. Rates increased linearly with the concentration of DOC. Between pH 4 and 8 rates increased by a factor of 5. Further results and kinetic considerations indicate that singlet oxygen, hydroxyl radicals, hydrogen peroxide, and hydroperoxyl radicals/superoxide are not important photooxidants in this system, while other NOM-derived reactive species, in particular excited triplet states and/or phenoxyl radicals, seem to be relevant. The dependence of rate coefficients on Sb(III)/DOC ratio was consistent with a two binding site model including (i) a strong binding site at low concentration inducing fast oxidation, (ii) a weak binding site at high concentration inducing slower oxidation, and (iii) the even slower oxidation of Sb(OH)3. Photoirradiation of natural water samples spiked with Sb(III) showed that the oxidation rates could be well predicted based on DOC.

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          July 2005
          July 2005
          : 39
          : 14
          : 5335-5341
          Article
          10.1021/es050269o
          16082964
          c5bb8dab-af6a-4d8f-a982-477383813a74
          © 2005
          History

          Comments

          Comment on this article