Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Species of Trichoderma Isolated as Endophytes and Saprobes from Southwest China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During the investigation of endophytic fungi diversity in aquatic plants and the fungal diversity in soil in southwest China, we obtained 208 isolates belonging to Trichoderma, including 28 isolates as endophytes from aquatic plants and 180 isolates as saprobes from soil, respectively. Finally, 23 new species of Trichoderma are recognized by further studies. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha ( tef1) and gene encoding of the second largest nuclear RNA polymerase subunit ( rpb2). The results revealed that the 23 new species are distributed in nine known clades. The morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives were compared and discussed. These include: Trichoderma achlamydosporum, T. amoenum, T. anaharzianum, T. anisohamatum, T. aquatica, T. asiaticum, T. asymmetricum, T. inaequilaterale, T. inconspicuum, T. insigne, T. obovatum, T. paraviride, T. pluripenicillatum, T. propepolypori, T. pseudoasiaticum, T. pseudoasperelloides, T. scorpioideum, T. simile, T. subazureum, T. subuliforme, T. supraverticillatum, T. tibetica, and T. uncinatum.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            AMPLIFICATION AND DIRECT SEQUENCING OF FUNGAL RIBOSOMAL RNA GENES FOR PHYLOGENETICS

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodiversity hotspots for conservation priorities.

              Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Fungi (Basel)
                J Fungi (Basel)
                jof
                Journal of Fungi
                MDPI
                2309-608X
                09 June 2021
                June 2021
                : 7
                : 6
                : 467
                Affiliations
                [1 ]Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; zhenghua@ 123456mail.ynu.edu.cn (H.Z.); qiaoming@ 123456ynu.edu.cn (M.Q.); LV19950131@ 123456hotmail.com (Y.L.); duxing@ 123456angelyeast.com (X.D.); kqzhang@ 123456ynu.edu.cn (K.-Q.Z.)
                [2 ]School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
                Author notes
                [* ]Correspondence: zfyu@ 123456ynu.edu.cn
                Author information
                https://orcid.org/0000-0002-0794-6742
                Article
                jof-07-00467
                10.3390/jof7060467
                8230185
                34207925
                c61ff44d-8ba9-4079-a6ad-9bb2a03bbd67
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 19 May 2021
                : 07 June 2021
                Categories
                Article

                soil-inhabiting,aquatic,endophytic,hypocreales,new species,trichoderma

                Comments

                Comment on this article