3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Analysis to Study the Molecular Response in the Gill and Hepatopancreas Tissues of Macrobrachium nipponense to Salinity Acclimation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrobrachium nipponense is an economically important prawn species and common in Chinese inland capture fisheries. During aquaculture, M. nipponense can survive under freshwater and low salinity conditions. The molecular mechanism underlying the response to salinity acclimation remains unclear in this species; thus, in this study, we used the Illumina RNA sequencing platform for transcriptome analyses of the gill and hepatopancreas tissues of M. nipponense exposed to salinity stress [0.4‰ (S0, control group), 6‰ (S6, low salinity group), and 12‰ (S12, high salinity group)]. Differentially expressed genes were identified, and several important salinity adaptation-related terms and signaling pathways were found to be enriched, such as “ion transport,” “oxidative phosphorylation,” and “glycometabolism.” Quantitative real-time PCR demonstrated the participation of 12 key genes in osmotic pressure regulation in M. nipponense under acute salinity stress. Further, the role of carbonic anhydrase in response to salinity acclimation was investigated by subjecting the gill tissues of M. nipponense to in situ hybridization. Collectively, the results reported herein enhance our understanding of the mechanisms via which M. nipponense adapts to changes in salinity.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

            Background RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. Results We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. Conclusions RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data

              Massively-parallel cDNA sequencing has opened the way to deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here, we present the Trinity methodology for de novo full-length transcriptome reconstruction, and evaluate it on samples from fission yeast, mouse, and whitefly – an insect whose genome has not yet been sequenced. Trinity fully reconstructs a large fraction of the transcripts present in the data, also reporting alternative splice isoforms and transcripts from recently duplicated genes. In all cases, Trinity performs better than other available de novo transcriptome assembly programs, and its sensitivity is comparable to methods relying on genome alignments. Our approach provides a unified and general solution for transcriptome reconstruction in any sample, especially in the complete absence of a reference genome.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                25 May 2022
                2022
                : 13
                : 926885
                Affiliations
                [1] 1 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University , Ministry of Education , Shanghai, China
                [2] 2 International Research Center for Marine Biosciences at Shanghai Ocean University , Ministry of Science and Technology , Shanghai, China
                [3] 3 Shenzhen Key Lab of Marine Genomics , Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals , BGI Academy of Marine Sciences , BGI Marine , Shenzhen, China
                Author notes

                Edited by: Xingkun Jin, Hohai University, China

                Reviewed by: Zhiquan Liu, East China Normal University, China

                Xiaodan Wang, East China Normal University, China

                *Correspondence: Shengming Sun, sunshengming621416@ 123456163.com

                This article was submitted to Aquatic Physiology, a section of the journal Frontiers in Physiology

                Article
                926885
                10.3389/fphys.2022.926885
                9176394
                35694393
                c645a159-37ef-4546-b84d-b60371d0ed3a
                Copyright © 2022 Xue, Xu, Jin, Bian and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 April 2022
                : 02 May 2022
                Funding
                Funded by: National Key Research and Development Program of China , doi 10.13039/501100012166;
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                macrobrachium nipponense,transcriptome,salinity,crustaceans,carbonic anhydrase

                Comments

                Comment on this article