Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      De novo damaging variants associated with congenital heart diseases contribute to the connectome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital heart disease (CHD) survivors are at risk for neurodevelopmental disability (NDD), and recent studies identify genes associated with both disorders, suggesting that NDD in CHD survivors may be of genetic origin. Genes contributing to neurogenesis, dendritic development and synaptogenesis organize neural elements into networks known as the connectome. We hypothesized that NDD in CHD may be attributable to genes altering both neural connectivity and cardiac patterning. To assess the contribution of de novo variants (DNVs) in connectome genes, we annotated 229 published NDD genes for connectome status and analyzed data from 3,684 CHD subjects and 1,789 controls for connectome gene mutations. CHD cases had more protein truncating and deleterious missense DNVs among connectome genes compared to controls (OR = 5.08, 95%CI:2.81–9.20, Fisher’s exact test P = 6.30E-11). When removing three known syndromic CHD genes, the findings remained significant (OR = 3.69, 95%CI:2.02–6.73, Fisher’s exact test P = 1.06E-06). In CHD subjects, the top 12 NDD genes with damaging DNVs that met statistical significance after Bonferroni correction ( PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP, SMAD2, KDM5B, NSD2, FOXP1, MED13L, DYRK1A; one-tailed binomial test P ≤ 4.08E-05) contributed to the connectome. These data suggest that NDD in CHD patients may be attributable to genes that alter both cardiac patterning and the connectome.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome.

          Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands

            Congenital heart disease (CHD) is the leading cause of mortality from birth defects. Exome sequencing of a single cohort of 2,871 CHD probands including 2,645 parent-offspring trios implicated rare inherited mutations in 1.8%, including a recessive founder mutation in GDF1 accounting for ~5% of severe CHD in Ashkenazim, recessive genotypes in MYH6 accounting for ~11% of Shone complex, and dominant FLT4 mutations accounting for 2.3% of Tetralogy of Fallot. De novo mutations (DNMs) accounted for 8% of cases, including ~3% of isolated CHD patients and ~28% with both neurodevelopmental and extra-cardiac congenital anomalies. Seven genes surpassed thresholds for genome-wide significance and 12 genes not previously implicated in CHD had > 70% probability of being disease-related; DNMs in ~440 genes are inferred to contribute to CHD. There was striking overlap between genes with damaging DNMs in probands with CHD and autism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cerebellum, sensitive periods, and autism.

              Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism. Specific cerebellar zones influence neocortical substrates for social interaction, and we propose that sensitive-period disruption of such internal brain communication can account for autism's key features.
                Bookmark

                Author and article information

                Contributors
                laura.ment@yale.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 April 2020
                27 April 2020
                2020
                : 10
                : 7046
                Affiliations
                [1 ]Departments of Pediatrics, New Haven, CT USA
                [2 ]Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT USA
                [3 ]Radiology and Biomedical Imaging, New Haven, CT USA
                [4 ]Genetics, New Haven, CT USA
                [5 ]Yale Combined Program in Biological and Biomedical Sciences, New Haven, CT USA
                [6 ]ISNI 0000000419368710, GRID grid.47100.32, Neurology, Yale School of Medicine, ; 333 Cedar Street, New Haven, CT USA
                Author information
                http://orcid.org/0000-0003-0347-5389
                Article
                63928
                10.1038/s41598-020-63928-2
                7184603
                32341405
                c648ce99-691f-439d-8a71-38c23441e822
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2019
                : 8 April 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100006108, U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS);
                Award ID: UL1 TR000142
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000050, U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI);
                Award ID: NIH UM1 HL098162
                Award ID: NIH R01 HL125885
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                genetics,paediatric research
                Uncategorized
                genetics, paediatric research

                Comments

                Comment on this article