52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser 111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65. We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

          The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65

            Summary Missense mutations in PTEN-induced kinase 1 (PINK1) cause autosomal-recessive inherited Parkinson's disease (PD). We have exploited our recent discovery that recombinant insect PINK1 is catalytically active to test whether PINK1 directly phosphorylates 15 proteins encoded by PD-associated genes as well as proteins reported to bind PINK1. We have discovered that insect PINK1 efficiently phosphorylates only one of these proteins, namely the E3 ligase Parkin. We have mapped the phosphorylation site to a highly conserved residue within the Ubl domain of Parkin at Ser65. We show that human PINK1 is specifically activated by mitochondrial membrane potential (Δψm) depolarization, enabling it to phosphorylate Parkin at Ser65. We further show that phosphorylation of Parkin at Ser65 leads to marked activation of its E3 ligase activity that is prevented by mutation of Ser65 or inactivation of PINK1. We provide evidence that once activated, PINK1 autophosphorylates at several residues, including Thr257, which is accompanied by an electrophoretic mobility band-shift. These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that PINK1 directly phosphorylates and activates Parkin. Our findings indicate that monitoring phosphorylation of Parkin at Ser65 and/or PINK1 at Thr257 represent the first biomarkers for examining activity of the PINK1-Parkin signalling pathway in vivo. Our findings also suggest that small molecule activators of Parkin that mimic the effect of PINK1 phosphorylation may confer therapeutic benefit for PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.

              Regulatory protein phosphorylation controls normal and pathophysiological signaling in eukaryotic cells. Despite great advances in mass-spectrometry-based proteomics, the extent, localization, and site-specific stoichiometry of this posttranslational modification (PTM) are unknown. Here, we develop a stringent experimental and computational workflow, capable of mapping more than 50,000 distinct phosphorylated peptides in a single human cancer cell line. We detected more than three-quarters of cellular proteins as phosphoproteins and determined very high stoichiometries in mitosis or growth factor signaling by label-free quantitation. The proportion of phospho-Tyr drastically decreases as coverage of the phosphoproteome increases, whereas Ser/Thr sites saturate only for technical reasons. Tyrosine phosphorylation is maintained at especially low stoichiometric levels in the absence of specific signaling events. Unexpectedly, it is enriched on higher-abundance proteins, and this correlates with the substrate KM values of tyrosine kinases. Our data suggest that P-Tyr should be considered a functionally separate PTM of eukaryotic proteomes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                EMBO J
                EMBO J
                embj
                The EMBO Journal
                John Wiley & Sons, Ltd (Chichester, UK )
                0261-4189
                1460-2075
                12 November 2015
                16 October 2015
                : 34
                : 22
                : 2840-2861
                Affiliations
                [1 ]MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee Dundee, UK
                [2 ]Centre for Integrated Protein Science Munich, Department Chemistry, Technische Universität München Garching, Germany
                [3 ]Division of Computational Biology, College of Life Sciences, University of Dundee Dundee, UK
                [4 ]Division of Signal Transduction Therapy, College of Life Sciences, University of Dundee Dundee, UK
                [5 ]Inserm U 1127 Paris, France
                [6 ]CNRS UMR 7225 Paris, France
                [7 ]Sorbonne Universités, UPMC Paris 06, UMR S 1127 Paris, France
                [8 ]Institut du Cerveau et de la Moelle épinière, ICM Paris, France
                [9 ]Inserm, Centre d'Investigation Clinique (CIC) Paris, France
                [10 ]AP-HP, Département des maladies du système nerveux, Hôpital de la Pitié-Salpêtrière Paris, France
                [11 ]College of Medicine, Dentistry & Nursing, University of Dundee Dundee, UK
                Author notes
                *Corresponding author. Tel: +44 1382 386402; E-mail: m.trost@ 123456dundee.ac.uk
                **Corresponding author. Tel: +44 1382 388377; E-mail: m.muqit@ 123456dundee.ac.uk

                Subject Categories Membrane & Intracellular Transport; Methods & Resources; Post-translational Modifications, Proteolysis & Proteomics

                [†]

                These authors contributed equally to this work

                Article
                10.15252/embj.201591593
                4654935
                26471730
                c6deaecc-53f9-4ab3-87dd-1a3b6e90af5e
                © 2015 The Authors. Published under the terms of the CC BY 4.0 license

                This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 March 2015
                : 14 September 2015
                : 18 September 2015
                Categories
                Resource

                Molecular biology
                parkinson's disease,phosphoproteomics,pink1,rab gtpases
                Molecular biology
                parkinson's disease, phosphoproteomics, pink1, rab gtpases

                Comments

                Comment on this article