25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

      research-article
      1 , 1 ,
      BMC Research Notes
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity.

          Findings

          Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene.

          Conclusions

          The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Q-Gene: processing quantitative real-time RT-PCR data.

          Q-Gene is an application for the processing of quantitative real-time RT-PCR data. It offers the user the possibility to freely choose between two principally different procedures to calculate normalized gene expressions as either means of Normalized Expressions or Mean Normalized Expressions. In this contribution it will be shown that the calculation of Mean Normalized Expressions has to be used for processing simplex PCR data, while multiplex PCR data should preferably be processed by calculating Normalized Expressions. The two procedures, which are currently in widespread use and regarded as more or less equivalent alternatives, should therefore specifically be applied according to the quantification procedure used. Web access to this program is provided at http://www.biotechniques.com/softlib/qgene.html
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune defense and host life history.

            Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster.

              The extent to which an organism is selected to invest in defences against pathogens and parasites depends on the advantages that ensue should infection occur, but also on the costs of maintaining defences in the absence of infection. The presence of heritable variation in resistance suggests that costs exist, but we know very little about the nature or magnitude of these costs in natural populations of animals. A powerful technique for identifying trade-offs between fitness components is the study of correlated responses to artificial selection. We have selected Drosophila melanogaster for improved resistance against an endoparasitoid, Asobara tabida. Endoparasitoids are insects whose larvae develop internally within the body of other insects, eventually killing them, although their hosts can sometimes survive attack by mounting a cellular immune response. We found that reduced larval competitive ability in unparasitized D. melanogaster is a correlated response to artificial selection for improved resistance against A. tabida. The strength of selection for competitive ability and parasitoid resistance is likely to vary temporally and spatially, which may explain the observed heritable variation in resistance.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2011
                23 August 2011
                : 4
                : 305
                Affiliations
                [1 ]School of Biological Sciences, Monash University, Melbourne, Vic 3800, Australia
                Article
                1756-0500-4-305
                10.1186/1756-0500-4-305
                3224532
                21859495
                c6f0e0db-1bf3-4d0a-8b46-5a5f32f21553
                Copyright ©2011 McGraw et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 June 2011
                : 23 August 2011
                Categories
                Short Report

                Medicine
                Medicine

                Comments

                Comment on this article