21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci.

          The details of all steps involved in the quantification of biofilm formation in microtiter plates are described. The presented protocol incorporates information on assessment of biofilm production by staphylococci, gained both by direct experience as well as by analysis of methods for assaying biofilm production. The obtained results should simplify quantification of biofilm formation in microtiter plates, and make it more reliable and comparable among different laboratories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.

            A Candida albicans gene (CPH1) was cloned that encodes a protein homologous to Saccharomyces cerevisiae Ste12p, a transcription factor that is the target of the pheromone response mitogen-activated protein kinase cascade. CPH1 complements both the mating defect of ste12 haploids and the filamentous growth defect of ste12/ste12 diploids. Candida albicans strains without a functional CPH1 gene (cph1/cph1) show suppressed hyphal formation on solid medium. However, cph1/cph1 strains can still form hyphae in liquid culture and in response to serum. Thus, filamentous growth may be activated in C. albicans by the same signaling kinase cascade that activates Ste12p in S. cerevisiae; however, alternative pathways may exist in C. albicans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morphogenesis in Candida albicans.

              Candida albicans is termed a dimorphic fungus because it proliferates in either a yeast form or a hyphal form. The switch between these forms is the result of a complex interplay of external and internal factors and is coordinated in part by polarity-regulating proteins that are conserved among eukaryotic cells. However, yeast and hyphal cells are not the only morphological states of C. albicans. The opaque form required for mating, the pseudohyphal cell, and the chlamydospore represent distinct cell types that form in response to specific genetic or environmental conditions. In addition, hyperextended buds can form as a result of various cell cycle-related stresses. Recent studies are beginning to shed light on some of the molecular controls regulating the various morphogenetic forms of this fascinating human pathogen.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 November 2016
                2016
                : 7
                : 1783
                Affiliations
                [1] 1Medical and Molecular Micology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte Natal, Brazil
                [2] 2Department of Mycology, Federal University of Pernambuco São Paulo, Brazil
                [3] 3Department of Oceanography and Limnology, Federal University of Rio Grande do Norte Natal, Brazil
                [4] 4Department of Tropical Medicine, Federal University of Pernambuco Recife, Brazil
                [5] 5Department of Mycology, Federal University of Pernambuco, Recife Pernambuco, Brazil
                Author notes

                Edited by: Leonardo Nimrichter, Federal University of Rio de Janeiro, Brazil

                Reviewed by: Joseph M. Bliss, Women and Infants Hospital of Rhode Island, USA; Derek Thomas, Grand Valley State University, USA

                *Correspondence: Guilherme M. Chaves, guilherme.chaves@ 123456ufrnet.br

                This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01783
                5108815
                27895625
                c71b6b56-7fa0-43f9-b5c7-ffa62aa7764e
                Copyright © 2016 Zuza-Alves, de Medeiros, de Souza, Silva-Rocha, Francisco, de Araújo, Lima-Neto, Neves, Melo and Chaves.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 June 2016
                : 24 October 2016
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 71, Pages: 13, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                candida tropicalis,coastal environment,virulence factors,osmotic stress,antifungal susceptibility

                Comments

                Comment on this article