3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of flywheel training on strength-related variables in female populations. A systematic review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d5477486e89">This study aimed to evaluate the effect of flywheel training on female populations, report practical recommendations for practitioners based on the currently available evidence, underline the limitations of current literature, and establish future research directions. Studies were searched through the electronic databases (PubMed, SPORTDiscus, and Web of Science) following the preferred reporting items for systematic reviews and meta-analysis statement guidelines. The methodological quality of the seven studies included in this review ranged from 10 to 19 points (good to excellent), with an average score of 14-points (good). These studies were carried out between 2004 and 2019 and comprised a total of 100 female participants. The training duration ranged from 5 weeks to 24 weeks, with volume ranging from 1 to 4 sets and 7 to 12 repetitions, and frequency ranged from 1 to 3 times a week. The contemporary literature suggests that flywheel training is a safe and time-effective strategy to enhance physical outcomes with young and elderly females. With this information, practitioners may be inclined to prescribe flywheel training as an effective countermeasure for injuries or falls and as potent stimulus for physical enhancement. </p>

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration

          Systematic reviews and meta-analyses are essential to summarise evidence relating to efficacy and safety of healthcare interventions accurately and reliably. The clarity and transparency of these reports, however, are not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (quality of reporting of meta-analysis) statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realising these issues, an international group that included experienced authors and methodologists developed PRISMA (preferred reporting items for systematic reviews and meta-analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this explanation and elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA statement, this document, and the associated website (www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs

            Effect sizes are the most important outcome of empirical studies. Most articles on effect sizes highlight their importance to communicate the practical significance of results. For scientists themselves, effect sizes are most useful because they facilitate cumulative science. Effect sizes can be used to determine the sample size for follow-up studies, or examining effects across studies. This article aims to provide a practical primer on how to calculate and report effect sizes for t-tests and ANOVA's such that effect sizes can be used in a-priori power analyses and meta-analyses. Whereas many articles about effect sizes focus on between-subjects designs and address within-subjects designs only briefly, I provide a detailed overview of the similarities and differences between within- and between-subjects designs. I suggest that some research questions in experimental psychology examine inherently intra-individual effects, which makes effect sizes that incorporate the correlation between measures the best summary of the results. Finally, a supplementary spreadsheet is provided to make it as easy as possible for researchers to incorporate effect size calculations into their workflow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progressive statistics for studies in sports medicine and exercise science.

              Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Research in Sports Medicine
                Research in Sports Medicine
                Informa UK Limited
                1543-8627
                1543-8635
                January 05 2021
                : 1-18
                Affiliations
                [1 ]Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain
                [2 ]School of Health and Sports Sciences, University of Suffolk, Ipswich, UK
                [3 ]Faculty of Science and Technology, London Sport Institute, Middlesex University, London, UK
                Article
                10.1080/15438627.2020.1870977
                33401963
                c71f4d84-5c15-45e6-afa1-86123f19e0d5
                © 2021
                History

                Comments

                Comment on this article