15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cosmic Web of Galaxies in the COSMOS Field: Public Catalog and Different Quenching for Centrals and Satellites

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Stellar population synthesis at the resolution of 2003

          We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities. These predictions are based on a newly available library of observed stellar spectra. We also compute the spectral evolution across a larger wavelength range, from 91 A to 160 micron, at lower resolution. The model incorporates recent progress in stellar evolution theory and an observationally motivated prescription for thermally-pulsing stars on the asymptotic giant branch. The latter is supported by observations of surface brightness fluctuations in nearby stellar populations. We show that this model reproduces well the observed optical and near-infrared colour-magnitude diagrams of Galactic star clusters of various ages and metallicities. Stochastic fluctuations in the numbers of stars in different evolutionary phases can account for the full range of observed integrated colours of star clusters in the Magellanic Clouds. The model reproduces in detail typical galaxy spectra from the Early Data Release (EDR) of the Sloan Digital Sky Survey (SDSS). We exemplify how this type of spectral fit can constrain physical parameters such as the star formation history, metallicity and dust content of galaxies. Our model is the first to enable accurate studies of absorption-line strengths in galaxies containing stars over the full range of ages. Using the highest-quality spectra of the SDSS EDR, we show that this model can reproduce simultaneously the observed strengths of those Lick indices that do not depend strongly on element abundance ratios [abridged].
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Galactic Stellar and Substellar Initial Mass Function

            We review recent determinations of the present day and initial mass functions in various components of the Galaxy, disk, spheroid, young and globular clusters. As a general feature, the IMF is well described by a power-law form for \(m\ga 1 \msol\) and a lognormal form below. The extension of the disk IMF into the brown dwarf (BD) regime is in good agreement with observations and yields a disk BD number-density comparable to the stellar one \(\sim 0.1 \pc3\). The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries. The spheroid IMF relies on much less robust grounds. Within all the uncertainties, it is found to be similar to the one derived for globular clusters, and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk. The IMF characteristic of early star formation remains undetermined, but different observational constraints suggest that it does not extend below \(\sim 1 \msol\). These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications in yielding more accurate mass-to-light ratio determinations. The M/L ratios obtained with the disk and the spheroid IMF yield values 1.8 and 1.4 smaller than a Salpeter IMF, respectively. This general IMF determination is examined in the context of star formation theory. (shortened)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observational Evidence of AGN Feedback

              A. Fabian (2012)
              Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar medium leading to ejection or heating of the gas. This can terminate star formation in the galaxy and stifle accretion onto the black hole. Such Active Galactic Nucleus (AGN) feedback can account for the observed proportionality between central black hole and host galaxy mass. Direct observational evidence for the radiative or quasar mode of feedback, which occurs when the AGN is very luminous, has been difficult to obtain but is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the mechanical energy of radio-emitting jets often seen when the AGN is operating at a lower level, is common in massive elliptical galaxies. This mode is well observed directly through X-ray observations of the central galaxies of cool core clusters in the form of bubbles in the hot surrounding medium. The energy flow, which is roughly continuous, heats the hot intracluster gas and reduces radiative cooling and subsequent star formation by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, jetted radio outbursts may represent a further mode of energy feedback which affect the cores of groups and subclusters. New telescopes and instruments from the radio to X-ray bands will come into operation over the next few years and lead to a rapid expansion in observational data on all modes of AGN feedback.
                Bookmark

                Author and article information

                Journal
                The Astrophysical Journal
                ApJ
                American Astronomical Society
                1538-4357
                March 01 2017
                February 28 2017
                : 837
                : 1
                : 16
                Article
                10.3847/1538-4357/837/1/16
                c7347c13-c83b-4244-ba67-0e0bbefbf43d
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                History

                Comments

                Comment on this article