0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Androgen Affects the Inhibitory Avoidance Memory by Primarily Acting on Androgen Receptor in the Brain in Adolescent Male Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study.

          The distribution of cells that express mRNA encoding the androgen (AR) and estrogen (ER) receptors was examined in adult male and female rats by using in situ hybridization. Specific labeling appeared to be largely, if not entirely, localized to neurons. AR and ER mRNA-containing neurons were widely distributed in the rat brain, with the greatest densities of cells in the hypothalamus, and in regions of the telencephalon that provide strong inputs in the medial preoptic and ventromedial nuclei, each of which is thought to play a key role in mediating the hormonal control of copulatory behavior, as well as in the lateral septal nucleus, the medial and cortical nuclei of the amygdala, the amygdalohippocampal area, and the bed nucleus of the stria terminalis. Heavily labeled ER mRNA-containing cells were found in regions known to be involved in the neural control of gonadotropin release, such as the anteroventral periventricular and the arcuate nuclei, but only a moderate density of labeling for AR mRNA was found over these nuclei. In addition, clearly labeled cells were found in regions with widespread connections throughout the brain, including the lateral hypothalamus, intralaminar thalamic nuclei, and deep layers of the cerebral cortex, suggesting that AR and ER may modulate a wide variety of neural functions. Each part of Ammon's horn contained AR mRNA-containing cells, as did both parts of the subiculum, but ER mRNA appeared to be less abundant in the hippocampal formation. Moreover, AR and ER mRNA-containing cells were also found in olfactory regions of the cortex and in both the main and accessory olfactory bulbs. AR and ER may modulate nonolfactory sensory information as well since labeled cells were found in regions involved in the central relay of somatosensory information, including the mesencephalic nucleus of the trigeminal nerve, the ventral thalamic nuclear group, and the dorsal horn of the spinal cord. Furthermore, heavily labeled AR mRNA-containing cells were found in the vestibular nuclei, the cochlear nuclei, the medial geniculate nucleus, and the nucleus of the lateral lemniscus, which suggests that androgens may alter the central relay of vestibular and auditory information as well. However, of all the regions involved in sensory processing, the heaviest labeling for AR and ER mRNA was found in areas that relay visceral sensory information such as the nucleus of the solitary tract, the area postrema, and the subfornical organ. We did not detect ER mRNA in brainstem somatic motoneurons, but clearly labeled AR mRNA-containing cells were found in motor nuclei associated with the fifth, seventh, tenth, and twelfth cranial nerves. Similarly, spinal motoneurons contained AR but not ER mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of memory acquisition, consolidation and retrieval.

            Memory is often considered to be a process that has several stages, including acquisition, consolidation and retrieval. Memory can be modified further through reconsolidation and performance can change during extinction trials while the original memory remains intact. Recent studies of the molecular basis of these processes have found that many signaling molecules are involved in several stages of memory but, in some cases, molecular pathways may be selectively recruited only during certain stages of memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A cholinergic trigger drives learning-induced plasticity at hippocampal synapses

              Acetylcholine (ACh) has a crucial role in mediating learning and memory1 2 3 4. A number of ACh receptors (AChRs) have been identified and are classified into two large families, muscarinic AChR (mAChRs) and nicotinic AChRs (nAChRs). Although the mAChRs are G-protein-coupled receptors, the nAChRs form ligand-gated ion channels1. The cholinergic modulation of synaptic plasticity is well described, including in long-term potentiation (LTP), a cellular model of learning and memory1 5 6 7 8. However, it is still unclear whether ACh mediates the learning-induced synaptic changes. Plasticity at excitatory and inhibitory synapses is involved in learning and memory. Experience, such as learning, strengthens excitatory glutamatergic synaptic transmission by driving AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) into synapses9 10 11 12 13 14 15 16 17 18 19. The inhibitory avoidance (IA) task, a contextual fear-learning task, increases AMPARs in CA3-CA1 hippocampal pyramidal synapses, which is required for memory formation16. Spatial learning in a water maze increases the frequency but not the amplitude of miniature inhibitory post-synaptic currents (mIPSCs) at hippocampal synapses20. Here we find that mAChR activation mediates the IA learning-induced synaptic delivery of AMPARs to hippocampal CA3-CA1 synapses. IA learning also strengthens inhibitory hippocampal synapses through the activation of nAChRs but not mAChRs. Further, we find significant correlation between the IA-induced increase in miniature excitatory post-synaptic current (mEPSC) and mIPSC amplitudes at individual pyramidal neurons. Thus, ACh balances the excitatory and inhibitory synaptic inputs onto CA1 pyramidal neurons in IA learning through the activation of distinct sets of AChRs. Results Extracellular ACh level in CA1 increases during learning To investigate learning-induced synaptic modification in the hippocampus, we used the IA task (Fig. 1). In this paradigm, rats are allowed to cross from an illuminated box to a dark box where an electric foot shock is delivered. Thus, rats learn to avoid the dark box and stay in the lighted one, which they would normally not prefer16 17. The tendency to avoid the dark box therefore indicates the acquisition of contextual memories. The rats avoided entering the dark box when it was associated with a mild electric shock (IA trained), but not those given foot shock without any contextual experience (unpaired) or those allowed to simply explore the experimental cage (walk through) (Fig. 1). Untrained control rats were kept in their home cages and were not exposed to the IA apparatus. As ACh induces LTP in hippocampal slices21, we hypothesized that ACh release into the hippocampus triggers the delivery of AMPARs in vivo. We therefore examined the extracellular ACh levels in the animals under different learning conditions by in vivo microdialysis of the dorsal CA1 (Fig. 2a). Although significant but transient increases in the extracellular ACh levels were observed in the unpaired (F 9, 72=3.830, P=0.0005, n=9, one-way analysis of variance (ANOVA)) and walk-through animals (F 9, 63=2.137, P=0.039, n=8, one-way ANOVA), the IA-trained rats displayed a prolonged rise in ACh levels (Fig. 2b, F 9, 63=6.694, P ~10 pA was recorded. When recording simultaneously from two cells, the stimulus intensity was increased until both cells showed a response >~10 pA. Synaptic AMPA receptor-mediated responses at –60 and +40 mV were averaged over 50–100 trials, and their ratio (averaged response at −60 mV/+40 mV) was used as an index of rectification. For paired recordings, infected and nearby uninfected cells (~100 μm) were accessed as whole cells, and the synaptic response to a stimulus was recorded from both cells simultaneously. The AMPA/NMDA ratio was calculated as the ratio of the peak current at −60 mV to the current at +40 mV 150 ms after stimulus onset (40–60 traces averaged for each holding potential). For the miniature recordings, the mEPSC (−60 mV holding potential) and mIPSC (0 mV holding potential) were recorded for 5 min in the same CA1 neuron. Bath application of an AMPA receptor blocker (CNQX, 10 μM) or γ-aminobutyric acid-A receptor blocker (bicuculline methiodide, 10 μM) completely blocked the mEPSC (at −60 mV) or mIPSC (at 0 mV) events, respectively. To evaluate the paired-pulse ratio from the EPSC or IPSC average, 30–60 sweeps were recorded with paired stimuli at 100-ms intervals. The EPSC or IPSC amplitudes were measured from the peak of the post-synaptic current to the basal current level immediately before the electrical stimulation. In vivo microdialysis Under sodium pentobarbital anaesthesia (30–50 mg kg−1, i.p.), a stainless steel guide cannula (outer diameter, 0.51 mm) was implanted stereotaxically into the right side of the dorsal hippocampus. After cannula implantation, a stylet was inserted into the guide until the microdialysis was performed. Although the rats were reared and housed socially, after surgery each rat was individually housed in a cylindrical plastic cage (diameter=35 cm, height=45 cm). The experiment was performed in an electromagnetic- and sound-shielded room (length 1.2 m, width 2.2 m and height 2.3 m)43. The stylet was replaced with a microdialysis probe the day before the experiment (outer diameter=0.31 mm, AI-4-0.5, Eicom Co., Kyoto, Japan). A two-channel fluid swivel device (SSU-20; Eicom Co.) was connected to the inlet and outlet of the probe. During the experiment, an artificial cerebrospinal fluid solution (147 mM NaCl, 4 mM KCl, 1.2 mM CaCl2 and 0.9 mM MgCl2) was infused through the dialysis probe with a 0.5-mm-long semipermeable membrane at a rate of 1.2 μl min−1 using a microdialysis pump (CMA/102, Carnegie Medicin, Stockholm, Sweden). The rats were housed individually in a cage, and the dialysis was performed under unanesthetized, freely moving conditions. After an overnight stabilization period, the dialysates were automatically collected into an autoinjector (24 μl; EAS-20, Eicom Co.) every 15 min, and the same volume of ethylhomocholine solution (100 nM) was mixed in as the internal standard. This mixture was injected directly onto an HPLC column every 15 min44. IA learning On the training day, the rats were moved into an electromagnetic- and sound-shielded room (length 1.2 m, width 2.2 m and height 2.3 m) with an IA training apparatus (length 25 cm, width 62 cm and height 45 cm). The apparatus is a two-chambered Perspex box consisting of a lighted safe side and a dark shock side, separated by a trap door. During training, the IA-trained rats were placed in the safe side of the box facing a corner opposite the door. After the trap door was opened, rats could enter the dark box at will. The latency before entering the novel dark box was measured as a behavioural parameter (latency before IA learning). Four seconds after the animals entered the dark side, we closed the door and applied a scrambled electrical foot shock (2 s, 1.6 mA) via electrified steel rods in the floor of the box. The rats were kept in the dark compartment for 10 s before being returned to their home cage. The training procedure for the control groups was as follows: the unpaired control rats (foot shock only) were placed in the box in the dark side and subjected to a scrambled electrical foot shock (2 s, 1.6 mA) without any contextual experience. The walk-through control rats were placed in the IA training apparatus and allowed to explore for 1 min, without shock. The untrained control rats were not removed from their home cages. Thirty minutes after the procedure described above, the rats were placed in the lighted side. The latency before entering the dark box was measured as an indicator of learning performance (latency after IA learning). The rats were then killed with an overdose of pentobarbital. For the untrained control, rats were injected with the same dose of anaesthesia in their home cage. Biochemical analysis of ACh ACh was quantified by combining HPLC, an enzyme reaction, and electrochemical detection (HTEC-500, Eicom Co.). A solution of 0.1 mM Na2HPO4 (pH 8.5) and 200 mg l−1 sodium 1-decanesulfonate (Aldrich Chemical Company, Inc., Milwaukee, WI) was delivered as the HPLC mobile phase at 150 μl min−1. After sample separation in a styrene polymer column (AC-GEL, Eicom Co.), the ACh was converted to hydrogen peroxide by a post-column enzyme reactor (AC-ENZYMPAK, Eicom Co.) containing immobilized acetylcholinesterase and choline oxidase. The hydrogen peroxide was detected with an electrochemical detector, with a minimum detectable amount of 5–10 fmol per sample. To calculate the recovery rate of each dialysis probe, standard samples were also infused through the probe in vitro. The amount of ACh collected every 15 min was divided by the in vitro recovery rate to estimate the extracellular ACh level. Statistics Extracellular ACh levels were analysed by one-way ANOVA with repeated measures followed by post hoc analysis with the Fisher-protected least significant difference test, where the variable was time. To evaluate the difference between groups, we calculated the baseline levels of ACh before the behavioural test, and the response was calculated as the AUC for each rat. The AUC, AMPA/NMDA ratio, IA latency, mEPSC and mIPSC data were analysed by one-way factorial ANOVA where the variable was the treatment group. The ANOVA was followed by post hoc analysis with the Fisher’s protected least significant difference test. The rectification index was analysed by a paired t-test. Cumulative distribution was analysed by the Kolmogorov–Smirnov test. The paired recording data were analysed by the Wilcoxon non-parametric test. The ratio of PPF or PPD (R2/R1) was analysed by unpaired two-tailed t-test. To evaluate the correlation between mEPSC and mIPSC parameters, Spearman’s rank correlation coefficient was calculated. P<0.05 was considered statistically significant. Author contributions D.M. and A.S. performed the experiment. T.T. and D.M. designed the experiment and wrote the manuscript. T.T and D.M. co-managed the project. Additional information How to cite this article: Mitsushima, D. et al. A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat. Commun. 4:2760 doi: 10.1038/ncomms3760 (2013). Supplementary Material Supplementary Information Supplementary Figures S1-S2 and Supplementary Tables S1-S2
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Brain Sci
                Brain Sci
                brainsci
                Brain Sciences
                MDPI
                2076-3425
                14 February 2021
                February 2021
                : 11
                : 2
                : 239
                Affiliations
                [1 ]Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; nabiul@ 123456yamaguchi-u.ac.jp (M.N.I.); rubayet.lucky@ 123456gmail.com (M.R.J.); g096eb@ 123456yamaguchi-u.ac.jp (E.M.); mamuntarif45@ 123456gmail.com (A.M.M.T.); nozakik@ 123456yamaguchi-u.ac.jp (K.N.); masukh@ 123456yamaguchi-u.ac.jp (K.-h.M.); akiey@ 123456yamaguchi-u.ac.jp (A.Y.)
                [2 ]Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; ysaki@ 123456yamaguchi-u.ac.jp (Y.S.); mitsu@ 123456yamaguchi-u.ac.jp (D.M.)
                [3 ]Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
                [4 ]Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1, Minami-Kogushi, Ube 755-8505, Japan
                Author notes
                [* ]Correspondence: shinoda@ 123456yamaguchi-u.ac.jp ; Tel.: +81-836-22-2204
                Author information
                https://orcid.org/0000-0002-9054-4807
                Article
                brainsci-11-00239
                10.3390/brainsci11020239
                7918178
                c739af88-241b-46a8-a7c8-a117bfb2a011
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 January 2021
                : 10 February 2021
                Categories
                Article

                emotional memory,male sex hormone,hippocampus,amygdala,rodent behavior

                Comments

                Comment on this article