11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reactive arthritis after COVID-19 vaccination

      1 , 1 , 2
      Human Vaccines & Immunotherapeutics
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          A guide to vaccinology: from basic principles to new developments

          Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial

            Background A vaccine against COVID-19 is urgently needed for older adults, in whom morbidity and mortality due to the disease are increased. We aimed to assess the safety, tolerability, and immunogenicity of a candidate COVID-19 vaccine, CoronaVac, containing inactivated SARS-CoV-2, in adults aged 60 years and older. Methods We did a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial of CoronaVac in healthy adults aged 60 years and older in Renqiu (Hebei, China). Vaccine or placebo was given by intramuscular injection in two doses (days 0 and 28). Phase 1 comprised a dose-escalation study, in which participants were allocated to two blocks: block 1 (3 μg inactivated virus in 0·5 mL of aluminium hydroxide solution per injection) and block 2 (6 μg per injection). Within each block, participants were randomly assigned (2:1) using block randomisation to receive CoronaVac or placebo (aluminium hydroxide solution only). In phase 2, participants were randomly assigned (2:2:2:1) using block randomisation to receive either CoronaVac at 1·5 μg, 3 μg, or 6 μg per dose, or placebo. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint was seroconversion rate at 28 days after the second injection (which was assessed in all participants who had received the two doses of vaccine according to their random assignment, had antibody results available, and did not violate the trial protocol). Seroconversion was defined as a change from seronegative at baseline to seropositive for neutralising antibodies to live SARS-CoV-2 (positive cutoff titre 1/8), or a four-fold titre increase if the participant was seropositive at baseline. This study is ongoing and is registered with ClinicalTrials.gov (NCT04383574). Findings Between May 22 and June 1, 2020, 72 participants (24 in each intervention group and 24 in the placebo group; mean age 65·8 years [SD 4·8]) were enrolled in phase 1, and between June 12 and June 15, 2020, 350 participants were enrolled in phase 2 (100 in each intervention group and 50 in the placebo group; mean age 66·6 years [SD 4·7] in 349 participants). In the safety populations from both phases, any adverse reaction within 28 days after injection occurred in 20 (20%) of 100 participants in the 1·5 μg group, 25 (20%) of 125 in the 3 μg group, 27 (22%) of 123 in the 6 μg group, and 15 (21%) of 73 in the placebo group. All adverse reactions were mild or moderate in severity and injection site pain (39 [9%] of 421 participants) was the most frequently reported event. As of Aug 28, 2020, eight serious adverse events, considered unrelated to vaccination, have been reported by seven (2%) participants. In phase 1, seroconversion after the second dose was observed in 24 of 24 participants (100·0% [95% CI 85·8–100·0]) in the 3 μg group and 22 of 23 (95·7% [78·1–99·9]) in the 6 μg group. In phase 2, seroconversion was seen in 88 of 97 participants in the 1·5 μg group (90·7% [83·1–95·7]), 96 of 98 in the 3 μg group (98·0% [92·8–99·8]), and 97 of 98 (99·0% [94·5–100·0]) in the 6 μg group. There were no detectable antibody responses in the placebo groups. Interpretation CoronaVac is safe and well tolerated in older adults. Neutralising antibody titres induced by the 3 μg dose were similar to those of the 6 μg dose, and higher than those of the 1·5 μg dose, supporting the use of the 3 μg dose CoronaVac in phase 3 trials to assess protection against COVID-19. Funding Chinese National Key Research and Development Program and Beijing Science and Technology Program.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction

              Since the early 1800s vaccines have saved numerous lives by preventing lethal infections. However, during the past two decades, there has been growing awareness of possible adverse events associated with vaccinations, cultivating heated debates and leading to significant fluctuations in vaccination rates. It is therefore pertinent for the scientific community to seriously address public concern of adverse effects of vaccines to regain public trust in these important medical interventions. Such adverse reactions to vaccines may be viewed as a result of the interaction between susceptibility of the vaccinated subject and various vaccine components. Among the implicated mechanisms for these reactions is molecular mimicry. Molecular mimicry refers to a significant similarity between certain pathogenic elements contained in the vaccine and specific human proteins. This similarity may lead to immune crossreactivity, wherein the reaction of the immune system towards the pathogenic antigens may harm the similar human proteins, essentially causing autoimmune disease. In this review, we address the concept of molecular mimicry and its application in explaining post vaccination autoimmune phenomena. We further review the principal examples of the influenza, hepatitis B, and human papilloma virus vaccines, all suspected to induce autoimmunity via molecular mimicry. Finally, we refer to possible implications on the potential future development of better, safer vaccines.
                Bookmark

                Author and article information

                Contributors
                Journal
                Human Vaccines & Immunotherapeutics
                Human Vaccines & Immunotherapeutics
                Informa UK Limited
                2164-5515
                2164-554X
                May 25 2021
                : 1-3
                Affiliations
                [1 ]Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
                [2 ]Department of Rheumatology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
                Article
                10.1080/21645515.2021.1920274
                34033732
                c77cfb6f-d6e5-4992-82d9-3e454b49ce75
                © 2021
                History

                Comments

                Comment on this article