6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human tissue kallikrein in the treatment of acute ischemic stroke

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute ischemic stroke (AIS) remains a major cause of death and disability throughout the world. The most severe form of stroke results from large vessel occlusion of the major branches of the Circle of Willis. The treatment strategies currently available in western countries for large vessel occlusion involve rapid restoration of blood flow through removal of the offending blood clot using mechanical or pharmacological means (e.g. tissue plasma activator; tPA). This review assesses prospects for a novel pharmacological approach to enhance the availability of the natural enzyme tissue kallikrein (KLK1), an important regulator of local blood flow. KLK1 is responsible for the generation of kinins (bradykinin and kallidin), which promote local vasodilation and long-term vascularization. Moreover, KLK1 has been used clinically as a direct treatment for multiple diseases associated with impaired local blood flow including AIS. A form of human KLK1 isolated from human urine is approved in the People’s Republic of China for subacute treatment of AIS. Here we review the rationale for using KLK1 as an additional pharmacological treatment for AIS by providing the biochemical mechanism as well as the human clinical data that support this approach.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Role of inflammation and its mediators in acute ischemic stroke.

          Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature.

            We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The stroke-migraine depolarization continuum.

              The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions--such as from ischemia--and facilitates neuronal death in energy-compromised tissue. SD has also been implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign. In addition to these two ends of the "SD continuum," an SD wave can propagate from an energy-depleted tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review presents the neurobiology of SD--its triggers and propagation mechanisms--as well as clinical manifestations of SD, including overlaps and differences between migraine aura and stroke, and recent developments in neuromonitoring aimed at better diagnosis and more targeted treatments.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ther Adv Neurol Disord
                Ther Adv Neurol Disord
                TAN
                sptan
                Therapeutic Advances in Neurological Disorders
                SAGE Publications (Sage UK: London, England )
                1756-2856
                1756-2864
                20 January 2019
                2019
                : 12
                : 1756286418821918
                Affiliations
                [1-1756286418821918]DiaMedica Therapeutics, 2 Carlson Parkway, Minneapolis, MN 55447, USA
                [2-1756286418821918]DiaMedica Therapeutics, Minneapolis, MN, USA
                [3-1756286418821918]Medical University of South Carolina, Department of Biochemistry and Molecular Biology, Charleston, SC, USA
                [4-1756286418821918]Houston Methodist, Stanley H. Appel Department of Neurology, Houston, TX, USA
                [5-1756286418821918]Stroke Trials Unit, University of Nottingham, City Hospital Campus, Nottingham, UK
                [6-1756286418821918]DiaMedica Therapeutics, Minneapolis, MN, USA
                Author notes
                Article
                10.1177_1756286418821918
                10.1177/1756286418821918
                6348491
                30719079
                c7846c5c-9769-4d87-bbbd-fad04654f6d5
                © The Author(s), 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 18 July 2018
                : 24 October 2018
                Funding
                Funded by: DiaMedica Therapeutics, ;
                Award ID: DiaMedica Research and Development Department
                Categories
                Review
                Custom metadata
                January-December 2019

                acute ischemic stroke,bradykinin,human tissue kallikrein,recombinant klk1,vasodilation

                Comments

                Comment on this article