39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete Genome Sequence of Mulberry Vein Banding Associated Virus, a New Tospovirus Infecting Mulberry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mulberry vein banding associated virus (MVBaV) that infects mulberry plants with typical vein banding symptoms had been identified as a tentative species of the genus Tospovirus based on the homology of N gene sequence to those of tospoviruses. In this study, the complete sequence of the tripartite RNA genome of MVBaV was determined and analyzed. The L RNA has 8905 nucleotides (nt) and encodes the putative RNA-dependent RNA polymerase (RdRp) of 2877 aa amino acids (aa) in the viral complementary (vc) strand. The RdRp of MVBaV shares the highest aa sequence identity (85.9%) with that of Watermelon silver mottle virus (WSMoV), and contains conserved motifs shared with those of the species of the genus Tospovirus. The M RNA contains 4731 nt and codes in ambisense arrangement for the NSm protein of 309 aa in the sense strand and the Gn/Gc glycoprotein precursor (GP) of 1,124 aa in the vc strand. The NSm and GP of MVBaV share the highest aa sequence identities with those of Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) (83.2% and 84.3%, respectively). The S RNA is 3294 nt in length and contains two open reading frames (ORFs) in an ambisense coding strategy, encoding a 439-aa non-structural protein (NSs) and the 277-aa nucleocapsid protein (N), respectively. The NSs and N also share the highest aa sequence identity (71.1% and 74.4%, respectively) with those of CaCV. Phylogenetic analysis of the RdRp, NSm, GP, NSs, and N proteins showed that MVBaV is most closely related to CaCV and GBNV and that these proteins cluster with those of the WSMoV serogroup, and that MVBaV seems to be a species bridging the two subgroups within the WSMoV serogroup of tospoviruses in evolutionary aspect, suggesting that MVBaV represents a distinct tospovirus. Analysis of S RNA sequence uncovered the highly conserved 5’-/3’-ends and the coding regions, and the variable region of IGR with divergent patterns among MVBaV isolates.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus.

          As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned and transiently expressed in resistant Capsicum plants to determine the identity of the Avr protein. It was shown that the NSs(RI) protein triggered a hypersensitive response (HR) in Tsw-containing Capsicum plants, but not in susceptible Capsicum, whereas no HR was discerned after expression of the N(RI) (/) (RB) protein, or when NSs(RB) was expressed. Although NSs(RI) was able to suppress the silencing of a functional green fluorescence protein (GFP) construct during Agrobacterium tumefaciens transient assays on Nicotiana benthamiana, NSs(RB) had lost this capacity. The observation that RB isolates suppressed local GFP silencing during an infection indicated a recovery of RNA silencing suppressor activity for the NSs protein or the presence of another RNA interference (RNAi) suppressor. The role of NSs as RNA silencing suppressor and Avr determinant is discussed in the light of a putative interplay between RNAi and the natural Tsw resistance gene. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology.

            Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology using a heterologous Tobacco mosaic virus expression system. Two regions of NSm, G(19)-S(159) and G(209)-V(283), were required for both tubule formation in protoplasts and cell-to-cell movement in plants, indicating a correlation between these activities. Three amino acid groups, D(154), EYKK(205-208) and EEEEE(284-288) were linked with long-distance movement in Nicotiana benthamiana. EEEEE(284-288) was essential for NSm-mediated long-distance movement, whereas D(154) was essential for tubule formation and cell-to-cell movement; indicating separate genetic controls for cell-to-cell and long-distance movement. The region I(57)-N(100) was identified as the determinant of foliar necrosis in Nicotiana benthamiana, and mutagenesis of HH(93-94) greatly reduced necrosis. These findings are likely applicable to other tospovirus species, especially those within the 'New World' group as NSm sequences are highly conserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression.

              Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 August 2015
                2015
                : 10
                : 8
                : e0136196
                Affiliations
                [1 ]College of Agriculture, Guangxi University, Nanning, China
                [2 ]State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (Guangxi University) and Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering, Nanning, China
                Washington State University, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BC JM. Performed the experiments: PL LZ. Analyzed the data: JM CZ. Contributed reagents/materials/analysis tools: JL. Wrote the paper: JM BC.

                Article
                PONE-D-15-15829
                10.1371/journal.pone.0136196
                4546196
                26291718
                c79855ef-fc92-49d6-9873-09f8b6e422cf
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 16 April 2015
                : 30 July 2015
                Page count
                Figures: 7, Tables: 4, Pages: 17
                Funding
                This work was partially supported by grants from the Natural Science Foundation of Guangxi Province (2011GXNSFD018019, 2014GXNSFAA118085), and the Key Laboratory of Ministry of Education of China for Microbial and Plant Genetic Engineering (JB1301). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and all sequence data are available from the GenBank database with accession numbers KM819698-KM819709.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article