0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electronic nose versus VITEK 2 system for the rapid diagnosis of bloodstream infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infectious diseases that spread through the bloodstream, known as bloodstream infections (BSIs), are a major global health problem. Positive outcomes for patients with sepsis are typically the result of prompt treatment started after an early diagnosis of BSIs. In this study, we evaluated the capabilities of a portable electronic nose (E-Nose) to detect BSIs with two commonly isolated Gram-negative bacterial species, E. coli and K. pneumonia. One hundred and five blood samples were randomly collected for blood culture examinations using BACTEC and VITEK 2 system, and headspace analysis by an E-Nose from June to December 2021. Classification accuracy of E. coli, K. pneumonia, and negative controls was measured using principal component analysis, area under the receiver operating characteristic curve, sensitivity, and specificity analysis. After incubation for 24 h, cluster plots generated using principal component analysis demonstrated that E-Nose could accurately diagnose the presence of E. coli and K. pneumonia in BACTEC blood culture bottles with a sensitivity and specificity of 100% in just 120 s. The E-Nose method has been shown to be an immediate, precise, and cost-effective alternative to automated blood culture BACTEC and VITEK 2 systems for the fast detection of the causative bacterial pathogens of BSIs in clinical practice. Thus, patients with such Gram-negative bacteremia can have guided empirical antimicrobial therapy on the same day of BSIs diagnosis, which can be lifesaving.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principal component analysis: a review and recent developments.

            Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori, hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Electronic Nose Feature Extraction Methods: A Review

              Many research groups in academia and industry are focusing on the performance improvement of electronic nose (E-nose) systems mainly involving three optimizations, which are sensitive material selection and sensor array optimization, enhanced feature extraction methods and pattern recognition method selection. For a specific application, the feature extraction method is a basic part of these three optimizations and a key point in E-nose system performance improvement. The aim of a feature extraction method is to extract robust information from the sensor response with less redundancy to ensure the effectiveness of the subsequent pattern recognition algorithm. Many kinds of feature extraction methods have been used in E-nose applications, such as extraction from the original response curves, curve fitting parameters, transform domains, phase space (PS) and dynamic moments (DM), parallel factor analysis (PARAFAC), energy vector (EV), power density spectrum (PSD), window time slicing (WTS) and moving window time slicing (MWTS), moving window function capture (MWFC), etc. The object of this review is to provide a summary of the various feature extraction methods used in E-noses in recent years, as well as to give some suggestions and new inspiration to propose more effective feature extraction methods for the development of E-nose technology.
                Bookmark

                Author and article information

                Contributors
                eimohamed@yahoo.com , ehab.abdo@alexu.edu.eg
                Journal
                Braz J Microbiol
                Braz J Microbiol
                Brazilian Journal of Microbiology
                Springer International Publishing (Cham )
                1517-8382
                1678-4405
                23 October 2023
                23 October 2023
                December 2023
                : 54
                : 4
                : 2857-2865
                Affiliations
                [1 ]Medical Biophysics Department, Medical Research Institute, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, Egypt
                [2 ]Microbiology Department, Medical Research Institute, Alexandria University, ( https://ror.org/00mzz1w90) Alexandria, Egypt
                [3 ]Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, ( https://ror.org/05y06tg49) Sixth of October City, Giza, Egypt
                [4 ]Medical Equipment Technology Department, Faculty of Applied Health Sciences Technology, Pharos University, ( https://ror.org/04cgmbd24) Alexandria, Egypt
                Author notes

                Responsible Editor: Luis Augusto Nero

                Author information
                http://orcid.org/0000-0002-4870-1928
                Article
                1154
                10.1007/s42770-023-01154-4
                10689606
                37872278
                c85fab36-1f43-41bc-b3a4-6648d6432c5d
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 March 2023
                : 12 October 2023
                Funding
                Funded by: Alexandria University
                Categories
                Clinical Microbiology - Research Paper
                Custom metadata
                © Sociedade Brasileira de Microbiologia 2023

                electronic nose (e-nose),bactec,vitek 2,e. coli,k. pneumonia

                Comments

                Comment on this article