23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Web-Based Virtual Patients in Nursing Education: Development and Validation of Theory-Anchored Design and Activity Models

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education.

          Objective

          The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education.

          Methods

          The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics.

          Results

          A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the integration of theory and practice.

          Conclusions

          Virtual patients that are adapted to the nursing paradigm can support nursing students’ development of clinical reasoning skills. The proposed virtual patient nursing design and activity models will allow the systematic development of different types of virtual patients from a common model and thereby create opportunities for sharing pedagogical designs across technical solutions.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          World Health Organization.

          Ala Alwan (2007)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Technology-enhanced simulation for health professions education: a systematic review and meta-analysis.

            Although technology-enhanced simulation has widespread appeal, its effectiveness remains uncertain. A comprehensive synthesis of evidence may inform the use of simulation in health professions education. To summarize the outcomes of technology-enhanced simulation training for health professions learners in comparison with no intervention. Systematic search of MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Original research in any language evaluating simulation compared with no intervention for training practicing and student physicians, nurses, dentists, and other health care professionals. Reviewers working in duplicate evaluated quality and abstracted information on learners, instructional design (curricular integration, distributing training over multiple days, feedback, mastery learning, and repetitive practice), and outcomes. We coded skills (performance in a test setting) separately for time, process, and product measures, and similarly classified patient care behaviors. From a pool of 10,903 articles, we identified 609 eligible studies enrolling 35,226 trainees. Of these, 137 were randomized studies, 67 were nonrandomized studies with 2 or more groups, and 405 used a single-group pretest-posttest design. We pooled effect sizes using random effects. Heterogeneity was large (I(2)>50%) in all main analyses. In comparison with no intervention, pooled effect sizes were 1.20 (95% CI, 1.04-1.35) for knowledge outcomes (n = 118 studies), 1.14 (95% CI, 1.03-1.25) for time skills (n = 210), 1.09 (95% CI, 1.03-1.16) for process skills (n = 426), 1.18 (95% CI, 0.98-1.37) for product skills (n = 54), 0.79 (95% CI, 0.47-1.10) for time behaviors (n = 20), 0.81 (95% CI, 0.66-0.96) for other behaviors (n = 50), and 0.50 (95% CI, 0.34-0.66) for direct effects on patients (n = 32). Subgroup analyses revealed no consistent statistically significant interactions between simulation training and instructional design features or study quality. In comparison with no intervention, technology-enhanced simulation training in health professions education is consistently associated with large effects for outcomes of knowledge, skills, and behaviors and moderate effects for patient-related outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virtual patients: a critical literature review and proposed next steps.

              The opposing forces of increased training expectations and reduced training resources have greatly impacted health professions education. Virtual patients (VPs), which take the form of interactive computer-based clinical scenarios, may help to reconcile this paradox. We summarise research on VPs, highlight the spectrum of potential variation and identify an agenda for future research. We also critically consider the role of VPs in the educational armamentarium. We propose that VPs' most unique and cost-effective function is to facilitate and assess the development of clinical reasoning. Clinical reasoning in experts involves a non-analytical process that matures through deliberate practice with multiple and varied clinical cases. Virtual patients are ideally suited to this task. Virtual patients can also be used in learner assessment, but scoring rubrics should emphasise non-analytical clinical reasoning rather than completeness of information or algorithmic approaches. Potential variations in VP design are practically limitless, yet few studies have rigorously explored design issues. More research is needed to inform instructional design and curricular integration. Virtual patients should be designed and used to promote clinical reasoning skills. More research is needed to inform how to effectively use VPs.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications Inc. (Toronto, Canada )
                1439-4456
                1438-8871
                April 2014
                10 April 2014
                : 16
                : 4
                : e105
                Affiliations
                [1] 1Center for Learning and Knowledge (CLK) Department of Learning, Informatics, Management and Ethics ( LIME) Karolinska Institutet StockholmSweden
                [2] 2Department of Neurobiology, Care Science and Society Division of Nursing Karolinska Institutet HuddingeSweden
                Author notes
                Corresponding Author: Carina Georg carina.georg@ 123456ki.se
                Article
                v16i4e105
                10.2196/jmir.2556
                4004162
                24727709
                c86371ad-ee0f-4055-84f8-67258bdb8d27
                ©Carina Georg, Nabil Zary. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.04.2014.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 18 March 2013
                : 18 April 2013
                : 30 January 2014
                : 21 February 2014
                Categories
                Original Paper
                Original Paper

                Medicine
                virtual patient,patient simulation,nursing education,clinical reasoning,e-learning, simulation technology

                Comments

                Comment on this article