23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ion channels and calcium signaling in motile cilia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca 2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca 2+] (~100 nM) at steady state. Ca 2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured Ca V1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca 2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas.

          DOI: http://dx.doi.org/10.7554/eLife.11066.001

          eLife digest

          Certain specialized cells in the brain, airways and Fallopian tubes have large numbers of hair-like structures called motile cilia on their surface. By beating in a synchronized manner, these cilia help to move fluids across the surface of the cells: for example, cilia on lung cells beat to clear mucus away, while those in the brain help the cerebrospinal fluid to circulate.

          Motile cilia in mammals are structurally similar to the flagella that propel sperm cells and certain single-celled organisms around their environments. These flagella have specialized pore-forming proteins called ion channels in their membrane through which calcium ions can move. This flow of calcium ions controls the beating of the flagella. However, it is unclear whether a similar movement of calcium ions across the cilia membrane regulates motile cilia beating in mammals.

          Doerner et al. have now used a method called patch clamping to study the movement of calcium ions across the membrane of the motile cilia found on a particular type of mouse brain cell. This revealed that unlike flagella, these motile cilia have very few voltage-gated calcium channels; instead, the vast majority of these ion channels reside in the main body of the cell. Furthermore, the level of calcium ions in the motile cilia follows changes in calcium ion levels that originate in the cell body.

          Overall, Doerner et al. demonstrate that the activity of voltage-gated calcium channels does not control the beating rhythm of the motile cilia in the mouse brain or how quickly the fluid above the cell surface moves. Future work should investigate whether this is also the case for the cells that line the trachea and Fallopian tubes.

          DOI: http://dx.doi.org/10.7554/eLife.11066.002

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Calcium signaling.

          Calcium ions (Ca(2+)) impact nearly every aspect of cellular life. This review examines the principles of Ca(2+) signaling, from changes in protein conformations driven by Ca(2+) to the mechanisms that control Ca(2+) levels in the cytoplasm and organelles. Also discussed is the highly localized nature of Ca(2+)-mediated signal transduction and its specific roles in excitability, exocytosis, motility, apoptosis, and transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain.

            Neural stem cells (NSCs, B1 cells) are retained in the walls of the adult lateral ventricles but, unlike embryonic NSCs, are displaced from the ventricular zone (VZ) into the subventricular zone (SVZ) by ependymal cells. Apical and basal compartments, which in embryonic NSCs play essential roles in self-renewal and differentiation, are not evident in adult NSCs. Here we show that SVZ B1 cells in adult mice extend a minute apical ending to directly contact the ventricle and a long basal process ending on blood vessels. A closer look at the ventricular surface reveals a striking pinwheel organization specific to regions of adult neurogenesis. The pinwheel's core contains the apical endings of B1 cells and in its periphery two types of ependymal cells: multiciliated (E1) and a type (E2) characterized by only two cilia and extraordinarily complex basal bodies. These results reveal that adult NSCs retain fundamental epithelial properties, including apical and basal compartmentalization, significantly reshaping our understanding of this adult neurogenic niche.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility.

              Mammalian spermatozoa become motile at ejaculation, but before they can fertilize the egg, they must acquire more thrust to penetrate the cumulus and zona pellucida. The forceful asymmetric motion of hyperactivated spermatozoa requires Ca2+ entry into the sperm tail by an alkalinization-activated voltage-sensitive Ca2+-selective current (ICatSper). Hyperactivation requires CatSper1 and CatSper2 putative ion channel genes, but the function of two other related genes (CatSper3 and CatSper4) is not known. Here we show that targeted disruption of murine CatSper3 or CatSper4 also abrogated ICatSper, sperm cell hyperactivated motility and male fertility but did not affect spermatogenesis or initial motility. Direct protein interactions among CatSpers, the sperm specificity of these proteins, and loss of ICatSper in each of the four CatSper-/- mice indicate that CatSpers are highly specialized flagellar proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                09 December 2015
                2015
                : 4
                : e11066
                Affiliations
                [1 ]deptDepartment of Cardiology , Howard Hughes Medical Institute, Boston Children's Hospital , Boston, United States
                [2 ]deptDepartment of Neurobiology , Harvard Medical School , Boston, United States
                [3]The University of Texas at Austin , United States
                [4]The University of Texas at Austin , United States
                Author notes
                Article
                11066
                10.7554/eLife.11066
                4714969
                26650848
                c8d0dadf-ae66-416e-bb85-fad49f9f2ccf
                © 2015, Doerner et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 22 August 2015
                : 27 October 2015
                Funding
                Funded by: Howard Hughes Medical Institute;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biophysics and Structural Biology
                Cell Biology
                Custom metadata
                2.5
                Direct patch clamp of ependymal motile cilia reveals that voltage-gated calcium channels in the cell body dominate their electrical and calcium signaling properties.

                Life sciences
                motile cilia,patch clamp,ion channels,calcium,mouse
                Life sciences
                motile cilia, patch clamp, ion channels, calcium, mouse

                Comments

                Comment on this article