21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      cGMP-Dependent Protein Kinase Contributes to Hydrogen Sulfide-Stimulated Vasorelaxation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing body of evidence suggests that hydrogen sulfide (H 2S) is a signaling molecule in mammalian cells. In the cardiovascular system, H 2S enhances vasodilation and angiogenesis. H 2S-induced vasodilation is hypothesized to occur through ATP-sensitive potassium channels (K ATP); however, we recently demonstrated that it also increases cGMP levels in tissues. Herein, we studied the involvement of cGMP-dependent protein kinase-I in H 2S-induced vasorelaxation. The effect of H 2S on vessel tone was studied in phenylephrine-contracted aortic rings with or without endothelium. cGMP levels were determined in cultured cells or isolated vessel by enzyme immunoassay. Pretreatment of aortic rings with sildenafil attenuated NaHS-induced relaxation, confirming previous findings that H 2S is a phosphodiesterase inhibitor. In addition, vascular tissue levels of cGMP in cystathionine gamma lyase knockouts were lower than those in wild-type control mice. Treatment of aortic rings with NaHS, a fast releasing H 2S donor, enhanced phosphorylation of vasodilator-stimulated phosphoprotein in a time-dependent manner, suggesting that cGMP-dependent protein kinase (PKG) is activated after exposure to H 2S. Incubation of aortic rings with a PKG-I inhibitor (DT-2) attenuated NaHS-stimulated relaxation. Interestingly, vasodilatory responses to a slowly releasing H 2S donor (GYY 4137) were unaffected by DT-2, suggesting that this donor dilates mouse aorta through PKG-independent pathways. Dilatory responses to NaHS and L-cysteine (a substrate for H 2S production) were reduced in vessels of PKG-I knockout mice (PKG-I−/−). Moreover, glibenclamide inhibited NaHS-induced vasorelaxation in vessels from wild-type animals, but not PKG-I−/−, suggesting that there is a cross-talk between K ATP and PKG. Our results confirm the role of cGMP in the vascular responses to NaHS and demonstrate that genetic deletion of PKG-I attenuates NaHS and L-cysteine-stimulated vasodilation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.

          Studies of nitric oxide over the past two decades have highlighted the fundamental importance of gaseous signaling molecules in biology and medicine. The physiological role of other gases such as carbon monoxide and hydrogen sulfide (H2S) is now receiving increasing attention. Here we show that H2S is physiologically generated by cystathionine gamma-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H2S levels in the serum, heart, aorta, and other tissues. Mutant mice lacking CSE display pronounced hypertension and diminished endothelium-dependent vasorelaxation. CSE is physiologically activated by calcium-calmodulin, which is a mechanism for H2S formation in response to vascular activation. These findings provide direct evidence that H2S is a physiologic vasodilator and regulator of blood pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

            Rui Wang (2002)
            Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener.

              Hydrogen sulfide (H(2)S) has been traditionally viewed as a toxic gas. It is also, however, endogenously generated from cysteine metabolism. We attempted to assess the physiological role of H(2)S in the regulation of vascular contractility, the modulation of H(2)S production in vascular tissues, and the underlying mechanisms. Intravenous bolus injection of H(2)S transiently decreased blood pressure of rats by 12- 30 mmHg, which was antagonized by prior blockade of K(ATP) channels. H(2)S relaxed rat aortic tissues in vitro in a K(ATP) channel-dependent manner. In isolated vascular smooth muscle cells (SMCs), H(2)S directly increased K(ATP) channel currents and hyperpolarized membrane. The expression of H(2)S-generating enzyme was identified in vascular SMCs, but not in endothelium. The endogenous production of H(2)S from different vascular tissues was also directly measured with the abundant level in the order of tail artery, aorta and mesenteric artery. Most importantly, H(2)S production from vascular tissues was enhanced by nitric oxide. Our results demonstrate that H(2)S is an important endogenous vasoactive factor and the first identified gaseous opener of K(ATP) channels in vascular SMCs.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                28 December 2012
                : 7
                : 12
                : e53319
                Affiliations
                [1 ]Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples–Federico II, Naples, Italy
                [2 ]Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
                [3 ]Developmental Biology Section, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
                [4 ]“G.P. Livanos” Laboratory, First Department of Critical Care and Pulmonary Services, University of Athens School of Medicine, Athens, Greece
                [5 ]Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
                [6 ]Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
                Maastricht University, The Netherlands
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AP MB GC RW. Performed the experiments: MB AC ZZ AZ VV PG. Analyzed the data: MB ZZ AZ AP GC RW KPK. Contributed reagents/materials/analysis tools: RF SD. Wrote the paper: AP GC RW RF.

                Article
                PONE-D-12-10566
                10.1371/journal.pone.0053319
                3532056
                23285278
                c90ac84d-54f5-47c5-9117-2a70f81aa0eb
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 April 2012
                : 30 November 2012
                Page count
                Pages: 10
                Funding
                This work has been funded by Fondazione per la Ricerca Scientifica Termale FoRST (Rome, Italy (to GC) and co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thalis; Investing in knowledge society through the European Social Fund and Aristeia 2011 (1436) to AP, by EU FP7 REGPOT CT-2011-285950 – “SEE-DRUG” and by the COST Action BM1005 (ENOG: European network on gasotransmitters). This work has also been partially supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada and the Heart and Stroke Foundation Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cardiovascular System
                Cell Physiology
                Biochemistry
                Neurochemistry
                Neurochemicals
                Nitric Oxide
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                cGMP signaling
                Medicine
                Cardiovascular
                Cardiovascular Pharmacology
                Hypertension
                Peripheral Vascular Diseases
                Vascular Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article