6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of MTHFR C677T gene polymorphism with metabolic syndrome in a Chinese population: a case–control study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the association of the MTHFR C677T gene polymorphism with metabolic syndrome (MetS) in people in Hubei Province, China.

          Methods

          A case–control study was conducted with 651 subjects with MetS (MetS group) and 727 healthy controls (control group) at Renmin Hospital of Wuhan University between January and December 2016. The MTHFR C677T genotype was detected by the gene chip technique and clinical data were collected.

          Results

          Body mass index, waist circumference, the waist-hip-ratio, systolic and diastolic blood pressure, fasting blood glucose, fasting insulin, triglyceride, total cholesterol, low-density lipoprotein-cholesterol, and homocysteine levels, and the homeostasis model assessment of insulin resistance were higher in the MetS group than in controls. The risk of MetS was higher for the TT genotype and T allele carriers than for the CC genotype and C allele carriers. With MetS, the TT genotype increased the risk of elevated blood pressure, fasting glucose levels, and triglyceride levels. Patients with MetS and the TT genotype showed more severe abdominal obesity, dyslipidaemia, insulin resistance, elevated blood pressure, elevated fasting glucose levels, and hyperhomocysteinaemia compared with those with the CC genotype.

          Conclusions

          In this population, MTHFR C677T gene polymorphism may be a risk factor for MetS.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity.

          A common mutation in methylenetetrahydrofolate reductase (MTHFR), C677T, results in a thermolabile variant with reduced activity. Homozygous mutant individuals (approximately 10% of North Americans) are predisposed to mild hyperhomocysteinemia, when their folate status is low. This genetic-nutrient interactive effect is believed to increase the risk for neural tube defects and vascular disease. In this communication, we characterize a second common variant in MTHFR (A1298C), an E to A substitution. Homozygosity was observed in approximately 10% of Canadian individuals. This polymorphism was associated with decreased enzyme activity; homozygotes had approximately 60% of control activity in lymphocytes. Heterozygotes for both the C677T and the A1298C mutation, approximately 15% of individuals, had 50-60% of control activity, a value that was lower than that seen in single heterozygotes for the C677T variant. No individuals were homozygous for both mutations. Additional studies of the A1298C mutation, in the absence and presence of the C677T mutation, are warranted, to adequately address the role of this new genetic variant in complex traits. A silent genetic variant, T1317C, was identified in the same exon. It was relatively infrequent (allele frequency 5%) in our study group, but was quite common in a small sample of African individuals (allele frequency 39%). Copyright 1998 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic variants and the metabolic syndrome: a systematic review.

            Several candidate gene studies on the metabolic syndrome (MetS) have been conducted. However, for most single nucleotide polymorphisms (SNPs) no systematic review on their association with MetS exists. A systematic electronic literature search was conducted until the 2nd of June 2010, using HuGE Navigator. English language articles were selected. Only genes of which at least one SNP-MetS association was studied in an accumulative total population ≥ 4000 subjects were included. Meta-analyses were conducted on SNPs with three or more studies available in a generally healthy population. In total 88 studies on 25 genes were reviewed. Additionally, for nine SNPs in seven genes (GNB3, PPARG, TCF7L2, APOA5, APOC3, APOE, CETP) a meta-analysis was conducted. The minor allele of rs9939609 (FTO), rs7903146 (TCF7L2), C56G (APOA5), T1131C (APOA5), C482T (APOC3), C455T (APOC3) and 174G>C (IL6) were more prevalent in subjects with MetS, whereas the minor allele of Taq-1B (CETP) was less prevalent in subjects with the MetS. After having systematically reviewed the most studied SNP-MetS associations, we found evidence for an association with the MetS for eight SNPs, mostly located in genes involved in lipid metabolism. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation

              Homocysteine has emerged as a novel independent marker of risk for the development of cardiovascular disease over the past three decades. Additionally, there is a graded mortality risk associated with an elevated fasting plasma total homocysteine (tHcy). Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) are now considered to be a strong coronary heart disease (CHD) risk enhancer and a CHD risk equivalent respectively. Hyperhomocysteinemia (HHcy) in patients with MS and T2DM would be expected to share a similar prevalence to the general population of five to seven percent and of even greater importance is: Declining glomerular filtration and overt diabetic nephropathy is a major determinant of tHcy elevation in MS and T2DM. There are multiple metabolic toxicities resulting in an excess of reactive oxygen species associated with MS, T2DM, and the accelerated atherosclerosis (atheroscleropathy). HHcy is associated with an increased risk of cardiovascular disease, and its individual role and how it interacts with the other multiple toxicities are presented. The water-soluble B vitamins (especially folate and cobalamin-vitamin B12) have been shown to lower HHcy. The absence of the cystathionine beta synthase enzyme in human vascular cells contributes to the importance of a dual role of folic acid in lowering tHcy through remethylation, as well as, its action of being an electron and hydrogen donor to the essential cofactor tetrahydrobiopterin. This folate shuttle facilitates the important recoupling of the uncoupled endothelial nitric oxide synthase enzyme reaction and may restore the synthesis of the omnipotent endothelial nitric oxide to the vasculature.
                Bookmark

                Author and article information

                Journal
                J Int Med Res
                J. Int. Med. Res
                IMR
                spimr
                The Journal of International Medical Research
                SAGE Publications (Sage UK: London, England )
                0300-0605
                1473-2300
                16 April 2018
                July 2018
                : 46
                : 7
                : 2658-2669
                Affiliations
                [1-0300060518768969]Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
                Author notes
                [*]Shiqi Tang, Physical Examination Center, Renmin Hospital of Wuhan University, Wuhan 430060, China. Email: healthaxis@ 123456outlook.com
                Article
                10.1177_0300060518768969
                10.1177/0300060518768969
                6124264
                29658358
                c9150b5c-d8e3-433e-ba5f-3b7771af5206
                © The Author(s) 2018

                Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 17 January 2017
                : 12 March 2018
                Categories
                Clinical Research Reports

                metabolic syndrome,5,10-methylenetetrahydrofolate reductase,polymorphism,gene,homocysteine,blood pressure,insulin resistance

                Comments

                Comment on this article