7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A hallmark of Alzheimer's disease (AD) pathology is the appearance of senile plaques, which are composed of β-amyloid (Aβ) peptides. Aβ is produced by sequential cleavages of amyloid precursor protein (APP) by β- and γ-secretases. These cleavages take place in endosomes during intracellular trafficking of APP through the endocytic and recycling pathways. Genome-wide association studies have identified several risk factors for late-onset AD, one of which is CD2-associated protein (CD2AP), an adaptor molecule that regulates membrane trafficking. Although CD2AP's involvement in APP trafficking has recently been reported, how APP trafficking is regulated remains unclear. We sought to address this question by investigating the effect of CD2AP overexpression or knockdown on the intracellular APP distribution and degradation of APP in cultured COS-7 and HEK293 cells. We found that overexpression of CD2AP increases the localization of APP to Rab7-positive late endosomes, and decreases its localization to Rab5-positive early endosomes. CD2AP overexpression accelerated the onset of APP degradation without affecting its degradation rate. Furthermore, nutrient starvation increased the localization of APP to Rab7-positive late endosomes, and CD2AP overexpression stimulated starvation-induced lysosomal APP degradation. Moreover, the effect of CD2AP on the degradation of APP was confirmed by CD2AP overexpression and knockdown in primary cortical neurons from mice. We conclude that CD2AP accelerates the transfer of APP from early to late endosomes. This transfer in localization stimulates APP degradation by reducing the amount of time before degradation initiation. Taken together, these results may explain why impaired CD2AP function is a risk factor for AD.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.

          The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the epsilon4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11-1.38 for risk alleles and 0.92-0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role for Rab7 in maturation of late autophagic vacuoles.

            The small GTP binding protein Rab7 has a role in the late endocytic pathway and lysosome biogenesis. The role of mammalian Rab7 in autophagy is, however, unknown. We have addressed this by inhibiting Rab7 function with RNA interference and overexpression of dominant negative Rab7. We show here that Rab7 was needed for the formation of preferably perinuclear, large aggregates, where the autophagosome marker LC3 colocalised with Rab7 and late endosomal and lysosomal markers. By electron microscopy we showed that these large aggregates corresponded to autophagic vacuoles surrounding late endosomal or lysosomal vesicles. Our experiments with quantitative electron microscopy showed that Rab7 was not needed for the initial maturation of early autophagosomes to late autophagic vacuoles, but that it participated in the final maturation of late autophagic vacuoles. Finally, we showed that the recruitment of Rab7 to autophagic vacuoles was retarded in cells deficient in the lysosomal membrane proteins Lamp1 and Lamp2, which we have recently shown to accumulate late autophagic vacuoles during starvation. In conclusion, our results showed a role for Rab7 in the final maturation of late autophagic vacuoles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rab7 is required for the normal progression of the autophagic pathway in mammalian cells.

              Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called an autophagosome that finally fuses with the lysosome. Rab7 is a member of the Rab family involved in transport to late endosomes and in the biogenesis of the perinuclear lysosome compartment. To assess the role of Rab7 in autophagy we stably transfected CHO cells with wild-type pEGFP-Rab7, and the mutants T22N (GDP form) and Q67L (GTP form). Autophagy was induced by amino acid starvation and the autophagic vacuoles were labeled with monodansylcadaverine. By fluorescence microscopy we observed that Rab7wt and the active mutant Rab7Q67L were associated with ring-shaped vesicles labeled with monodansylcadaverine indicating that these Rab proteins associate with the membrane of autophagic vesicles. As expected, in cells transfected with the negative mutant Rab7T22N the protein was diffusely distributed in the cytosol. However, upon induction of autophagy by amino acid starvation or by rapamycin treatment this mutant clearly decorated the monodansylcadaverine-labeled vesicles. Furthermore, a marked increase in the size of the monodansylcadaverine-labeled vacuoles induced by starvation was observed by overexpression of the inactive mutant T22N. Similarly, there was an increase in the size of vesicles labeled with LC3, a protein that specifically localizes on the autophagosomal membrane. Taken together the results indicate that a functional Rab7 is important for the normal progression of autophagy.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                July 12 2019
                July 12 2019
                July 12 2019
                May 28 2019
                : 294
                : 28
                : 10886-10899
                Article
                10.1074/jbc.RA118.005385
                6635452
                31138646
                c92b3641-eb0d-46c7-8d78-53aca67acb26
                © 2019
                History

                Comments

                Comment on this article