7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inability to form new memories is an early clinical sign of Alzheimer’s disease (AD). There is ample evidence that the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Aβ are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Aβ−mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Aβ 1–42 oligomers impaired consolidation of the long-term recognition memory, whereas mature Aβ 1–42 fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Aβ antibody. It has been suggested that the cellular prion protein (PrP C ) mediates the impairment of synaptic plasticity induced by Aβ. We confirmed that Aβ 1–42 oligomers interact with PrP C , with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Aβ 1–42 oligomers are responsible for cognitive impairment in AD and that PrP C is not required.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          A specific amyloid-beta protein assembly in the brain impairs memory.

          Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice ( 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory.

            Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss.

              Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 02 2010
                January 19 2010
                February 02 2010
                : 107
                : 5
                : 2295-2300
                Affiliations
                [1 ]Department of Neuroscience and
                [2 ]Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan 20156, Italy; and
                [3 ]Dulbecco Telethon Institute, Milan 20156, Italy
                Article
                10.1073/pnas.0911829107
                2836680
                20133875
                c93291dc-62ef-47ac-9699-78530bcd8482
                © 2010
                History

                Comments

                Comment on this article