30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of Nucleotide Oligomerization Domain 2 (NOD2) by Human Cytomegalovirus Initiates Innate Immune Responses and Restricts Virus Replication

      research-article
      1 , 2 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleotide-binding oligomerization domain 2 (NOD2) is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV) results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs) and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β) and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease.

          Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology. A susceptibility locus for Crohn's disease has been mapped to chromosome 16. Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes. These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection.

            Nod2 activates the NF-kappaB pathway following intracellular stimulation by bacterial products. Recently, mutations in Nod2 have been shown to be associated with Crohn's disease, suggesting a role for bacteria-host interactions in the etiology of this disorder. We show here that Nod2 is a general sensor of peptidoglycan through the recognition of muramyl dipeptide (MDP), the minimal bioactive peptidoglycan motif common to all bacteria. Moreover, the 3020insC frameshift mutation, the most frequent Nod2 variant associated with Crohn's disease patients, fully abrogates Nod2-dependent detection of peptidoglycan and MDP. Together, these results impact on the understanding of Crohn's disease development. Additionally, the characterization of Nod2 as the first pathogen-recognition molecule that detects MDP will help to unravel the well known biological activities of this immunomodulatory compound.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracellular NOD-like receptors in host defense and disease.

              The innate immune system comprises several classes of pattern recognition receptors, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-1-like receptors (RLRs). TLRs recognize microbes on the cell surface and in endosomes, whereas NLRs and RLRs detect microbial components in the cytosol. Here we discuss the recent understanding in NLRs. Two NLRs, NOD1 and NOD2, sense the cytosolic presence of the peptidoglycan fragments meso-DAP and muramyl dipeptide, respectively, and drive the activation of mitogen-activated protein kinase (MAPK) and the transcription factor NF-kappaB. A different set of NLRs induces caspase-1 activation through the assembly of large protein complexes named inflammasomes. Genetic variations in several NLR members are associated with the development of inflammatory disorders. Further understanding of NLRs should provide new insights into the mechanisms of host defense and the pathogenesis of inflammatory diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 March 2014
                : 9
                : 3
                : e92704
                Affiliations
                [1 ]Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                [2 ]Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
                University of Regensburg, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AK MF RAB. Performed the experiments: AK MF. Analyzed the data: AK MF RAB. Wrote the paper: RAB AK.

                Article
                PONE-D-13-49464
                10.1371/journal.pone.0092704
                3966837
                24671169
                ca4cf7b9-4b56-4514-a63f-8a9951da364a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 November 2013
                : 25 February 2014
                Page count
                Pages: 13
                Funding
                Publication of this article was funded in part by the Open Access Promotion Fund of the Johns Hopkins University Libraries. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Immunology
                Immune System
                Innate Immune System
                Clinical Immunology
                Immune Response
                Immunity
                Microbiology
                Virology
                Viral Classification
                Organisms
                Viruses
                DNA viruses
                RNA viruses
                Medicine and Health Sciences
                Infectious Diseases
                Viral Diseases
                Cytomegalovirus Infection
                Pathology and Laboratory Medicine
                Pathogenesis
                Host-Pathogen Interactions

                Uncategorized
                Uncategorized

                Comments

                Comment on this article