7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A biopsychosocial approach to processes and pathways in the development of overweight and obesity in childhood: Insights from developmental theory and research

      1 , 2
      Obesity Reviews
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references371

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults

          Summary Background Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. Methods We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). Findings Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (−0·01 kg/m2 per decade; 95% credible interval −0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (−0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24–89) million girls and 74 (39–125) million boys worldwide were obese. Interpretation The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. Funding Wellcome Trust, AstraZeneca Young Health Programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Health Effects of Overweight and Obesity in 195 Countries over 25 Years.

            Background While the rising pandemic of obesity has received significant attention in many countries, the effect of this attention on trends and the disease burden of obesity remains uncertain. Methods We analyzed data from 67.8 million individuals to assess the trends in obesity and overweight prevalence among children and adults between 1980 and 2015. Using the Global Burden of Disease study data and methods, we also quantified the burden of disease related to high body mass index (BMI), by age, sex, cause, and BMI level in 195 countries between 1990 and 2015. Results In 2015, obesity affected 107.7 million (98.7-118.4) children and 603.7 million (588.2- 619.8) adults worldwide. Obesity prevalence has doubled since 1980 in more than 70 countries and continuously increased in most other countries. Although the prevalence of obesity among children has been lower than adults, the rate of increase in childhood obesity in many countries was greater than the rate of increase in adult obesity. High BMI accounted for 4.0 million (2.7- 5.3) deaths globally, nearly 40% of which occurred among non-obese. More than two-thirds of deaths related to high BMI were due to cardiovascular disease. The disease burden of high BMI has increased since 1990; however, the rate of this increase has been attenuated due to decreases in underlying cardiovascular disease death rates. Conclusions The rapid increase in prevalence and disease burden of elevated BMI highlights the need for continued focus on surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic studies of body mass index yield new insights for obesity biology.

              Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P  20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Obesity Reviews
                Obesity Reviews
                Wiley
                1467-7881
                1467-789X
                April 03 2019
                May 2019
                February 15 2019
                May 2019
                : 20
                : 5
                : 725-749
                Affiliations
                [1 ]Faculty of Health, School of Exercise and Nutrition Sciences, Centre for Advanced Sensory ScienceDeakin University Burwood Australia
                [2 ]College of Education, Psychology and Social WorkFlinders University Bedford Park South Australia
                Article
                10.1111/obr.12838
                30768750
                ca592314-f01b-47ff-896b-6d79e493bf81
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article