Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sulfur Homeostasis in Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO 4 2− from the soil and the transport of SO 4 2− in plants. There are 12–16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.

          Recent studies have demonstrated the important role of plant microRNAs (miRNAs) under nutrient deficiencies. In this study, deep sequencing of Arabidopsis (Arabidopsis thaliana) small RNAs was conducted to reveal miRNAs and other small RNAs that were differentially expressed in response to phosphate (Pi) deficiency. About 3.5 million sequence reads corresponding to 0.6 to 1.2 million unique sequence tags from each Pi-sufficient or Pi-deficient root or shoot sample were mapped to the Arabidopsis genome. We showed that upon Pi deprivation, the expression of miR156, miR399, miR778, miR827, and miR2111 was induced, whereas the expression of miR169, miR395, and miR398 was repressed. We found cross talk coordinated by these miRNAs under different nutrient deficiencies. In addition to miRNAs, we identified one Pi starvation-induced DICER-LIKE1-dependent small RNA derived from the long terminal repeat of a retrotransposon and a group of 19-nucleotide small RNAs corresponding to the 5' end of tRNA and expressed at a high level in Pi-starved roots. Importantly, we observed an increased abundance of TAS4-derived trans-acting small interfering RNAs (ta-siRNAs) in Pi-deficient shoots and uncovered an autoregulatory mechanism of PAP1/MYB75 via miR828 and TAS4-siR81(-) that regulates the biosynthesis of anthocyanin. This finding sheds light on the regulatory network between miRNA/ta-siRNA and its target gene. Of note, a substantial amount of miR399* accumulated under Pi deficiency. Like miR399, miR399* can move across the graft junction, implying a potential biological role for miR399*. This study represents a comprehensive expression profiling of Pi-responsive small RNAs and advances our understanding of the regulation of Pi homeostasis mediated by small RNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.

            Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.

              Phosphorus, one of the essential elements for plants, is often a limiting nutrient because of its low availability and mobility in soils. Significant changes in plant morphology and biochemical processes are associated with phosphate (Pi) deficiency. However, the molecular bases of these responses to Pi deficiency are not thoroughly elucidated. Therefore, a comprehensive survey of global gene expression in response to Pi deprivation was done by using Arabidopsis thaliana whole genome Affymetrix gene chip (ATH1) to quantify the spatio-temporal variations in transcript abundance of 22,810 genes. The analysis revealed a coordinated induction and suppression of 612 and 254 Pi-responsive genes, respectively. The functional classification of some of these genes indicated their involvement in various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. This study is a detailed analysis of Pi starvation-induced changes in gene expression of the entire genome of Arabidopsis correlated with biochemical processes. The results not only enhance our knowledge about molecular processes associated with Pi deficiency, but also facilitate the identification of key molecular determinants for improving Pi use by crop species.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 November 2020
                December 2020
                : 21
                : 23
                : 8926
                Affiliations
                State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; liqian18@ 123456nwafu.edu.cn (Q.L.); duolungaoyan@ 123456foxmail.com (Y.G.)
                Author notes
                [* ]Correspondence: anyang@ 123456ibcas.ac.cn
                [†]

                Current address: College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.

                [‡]

                Current address: Duolun County Grassland Management Station, Inner Mongolia Autonomous Region, Duolun 027300, Inner Mongolia, China.

                [§]

                These authors contributed equally to this work.

                Article
                ijms-21-08926
                10.3390/ijms21238926
                7727837
                33255536
                ca6abc84-43ee-44d6-bdd4-430e3a5002bc
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 November 2020
                : 20 November 2020
                Categories
                Review

                Molecular biology
                s homeostasis,s absorption,assimilation and metabolism,regulatory mechanisms
                Molecular biology
                s homeostasis, s absorption, assimilation and metabolism, regulatory mechanisms

                Comments

                Comment on this article