30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opposite effects of visual and auditory word-likeness on activity in the visual word form area

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present fMRI study investigated the effects of word-likeness of visual and auditory stimuli on activity along the ventral visual stream. In the context of a one-back task, we presented visual and auditory words, pseudowords, and artificial stimuli (i.e., false-fonts and reversed-speech, respectively). Main findings were regionally specific effects of word-likeness on activation in a left ventral occipitotemporal region corresponding to the classic localization of the Visual Word Form Area (VWFA). Specifically, we found an inverse word-likeness effect for the visual stimuli in the form of decreased activation for words compared to pseudowords which, in turn, elicited decreased activation compared to the artificial stimuli. For the auditory stimuli, we found positive word-likeness effects as both words and pseudowords elicited more activation than the artificial stimuli. This resulted from a marked deactivation in response to the artificial stimuli and no such deactivation for words and pseudowords. We suggest that the opposite effects of visual and auditory word-likeness on VWFA activation can be explained by assuming the involvement of visual orthographic memory representations. For the visual stimuli, these representations reduce the coding effort as a function of word-likeness. This results in highest activation to the artificial stimuli and least activation to words for which corresponding representations exist. The positive auditory word-likeness effects may result from activation of orthographic information associated with the auditory words and pseudowords. The view that the VWFA has a primarily visual function is supported by our findings of high activation to the visual artificial stimuli (which have no phonological or semantic associations) and deactivation to the auditory artificial stimuli. According to the phenomenon of cross-modal sensory suppression such deactivations during demanding auditory processing are expected in visual regions.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing.

          The advent of functional neuroimaging has allowed tremendous advances in our understanding of brain-language relationships, in addition to generating substantial empirical data on this subject in the form of thousands of activation peak coordinates reported in a decade of language studies. We performed a large-scale meta-analysis of this literature, aimed at defining the composition of the phonological, semantic, and sentence processing networks in the frontal, temporal, and inferior parietal regions of the left cerebral hemisphere. For each of these language components, activation peaks issued from relevant component-specific contrasts were submitted to a spatial clustering algorithm, which gathered activation peaks on the basis of their relative distance in the MNI space. From a sample of 730 activation peaks extracted from 129 scientific reports selected among 260, we isolated 30 activation clusters, defining the functional fields constituting three distributed networks of frontal and temporal areas and revealing the functional organization of the left hemisphere for language. The functional role of each activation cluster is discussed based on the nature of the tasks in which it was involved. This meta-analysis sheds light on several contemporary issues, notably on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables including the primary auditory areas and the motor mouth area, evidence of areas of overlap between phonological and semantic processing, in particular at the location of the selective human voice area that was the seat of partial overlap of the three language components, the evidence of a cortical area in the pars opercularis of the inferior frontal gyrus dedicated to syntactic processing and in the posterior part of the superior temporal gyrus a region selectively activated by sentence and text processing, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components. These results argue for large-scale architecture networks rather than modular organization of language in the left hemisphere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The unique role of the visual word form area in reading.

            Reading systematically activates the left lateral occipitotemporal sulcus, at a site known as the visual word form area (VWFA). This site is reproducible across individuals/scripts, attuned to reading-specific processes, and partially selective for written strings relative to other categories such as line drawings. Lesions affecting the VWFA cause pure alexia, a selective deficit in word recognition. These findings must be reconciled with the fact that human genome evolution cannot have been influenced by such a recent and culturally variable activity as reading. Capitalizing on recent functional magnetic resonance imaging experiments, we provide strong corroborating evidence for the hypothesis that reading acquisition partially recycles a cortical territory evolved for object and face recognition, the prior properties of which influenced the form of writing systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cultural recycling of cortical maps.

              Part of human cortex is specialized for cultural domains such as reading and arithmetic, whose invention is too recent to have influenced the evolution of our species. Representations of letter strings and of numbers occupy reproducible locations within large-scale macromaps, respectively in the left occipito-temporal and bilateral intraparietal cortex. Furthermore, recent fMRI studies reveal a systematic architecture within these areas. To explain this paradoxical cerebral invariance of cultural maps, we propose a neuronal recycling hypothesis, according to which cultural inventions invade evolutionarily older brain circuits and inherit many of their structural constraints.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                29 August 2013
                2013
                : 7
                : 491
                Affiliations
                [1] 1Centre for Neurocognitive Research and Department of Psychology, University of Salzburg Salzburg, Austria
                [2] 2Neuroscience Institute, Christian-Doppler-Clinic, Paracelsus Medical University Salzburg Salzburg, Austria
                Author notes

                Edited by: Urs Maurer, University of Zurich, Switzerland

                Reviewed by: Cheryl Grady, University of Toronto, Canada; Jianfeng Yang, Chinese Academy of Sciences, China

                *Correspondence: Philipp Ludersdorfer, Centre for Neurocognitive Research and Department of Psychology, University of Salzburg, Hellbrunnerstrasse 34/II, 5020 Salzburg, Austria e-mail: philipp.ludersdorfer@ 123456sbg.ac.at

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2013.00491
                3756304
                24009569
                cae9b444-8927-4351-8bae-7693e337ef25
                Copyright © 2013 Ludersdorfer, Schurz, Richlan, Kronbichler and Wimmer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 April 2013
                : 02 August 2013
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 46, Pages: 10, Words: 8210
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                fmri,neuroimaging,one-back task,word-likeness,word processing,vwfa,orthographic representations

                Comments

                Comment on this article