3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic association of ACE2 and TMPRSS2 polymorphisms with COVID-19 severity; a single centre study from Egypt

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Since the emergence of the COVID-19 infection in China, it has caused considerable morbidity, mortality, and economic burden. It causes the vast majority of clinical manifestations, ranging from mild or even no symptoms to severe respiratory failure. There are many risk factors for severe COVID-19, such as old age, male gender, and associated comorbidities. A major role for genetic factors may exist. The SARS-CoV-2 virus enters the cell primarily through ACE2 receptors. rs2285666 is one of many polymorphisms found in the ACE2 receptor gene. To enable endosome-independent entry into target cells, the transmembrane protease serine-type 2 (TMPRSS2) is necessary to cleave the virus’ spike (S) glycoprotein. TMPRSS2 is characterized by an androgen receptor element. The rs12329760 polymorphism in TMPRSS2 may explain different genetic susceptibilities to COVID-19.

          Method

          This cross-sectional study was held in Mansoura University Hospitals during the period from June 2020 to April 2022 on patients who had mild and severe COVID-19. Demographic, clinical, and laboratory data were collected, and the TaqMan real-time polymerase chain was used for allelic discrimination in the genotyping of rs2285666 and rs12329760.

          Results

          This study included 317 Egyptian patients, aged from 0.2 to 87 years. Males were 146, while females were 171. They were divided into mild and severe groups (91 and 226 patients, respectively) based on their clinical symptoms. There was a significant association between COVID-19 severity and male gender, hypertension, diabetes mellitus, and high CRP. The genotype and allele frequency distributions of the ACE2 rs2285666 polymorphism showed no significant association with the severity of COVID-19 in both. In contrast, in TMPRSS2 rs12329760 minor T allele and CT, TT genotypes were significantly associated with a reduced likelihood of developing severe COVID-19.

          Conclusion

          Our study indicates that the ACE2 rs2285666 polymorphism is not related to the severity of COVID-19, whether genotypes or alleles. In TMPRSS2 rs12329760, the dominant model and T allele showed significantly lower frequencies in severe cases, with a protective effect against severity. The discrepancies with previous results may be due to variations in other ACE2 receptor-related genes, inflammatory mediators, and coagulation indicators. Haplotype blocks and differences in racial makeup must be taken into consideration. Future research should be done to clarify how ethnicity affects these polymorphisms and how other comorbidities combine to have an additive effect.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

            Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

              Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
                Bookmark

                Author and article information

                Contributors
                ali.sobh@mans.edu.eg
                Journal
                Virol J
                Virol J
                Virology Journal
                BioMed Central (London )
                1743-422X
                23 January 2024
                23 January 2024
                2024
                : 21
                : 27
                Affiliations
                [1 ]Department of Medical Biochemistry and Molecular Biology, Mansoura University Faculty of Medicine, ( https://ror.org/01k8vtd75) Mansoura, Egypt
                [2 ]Department of Basic Medical Sciences, Faculty of Medicine, New Mansoura University, ( https://ror.org/05km0w312) Mansoura, Egypt
                [3 ]Department of Medical Microbiology and Immunology, Mansoura University Faculty of Medicine, ( https://ror.org/01k8vtd75) Mansoura, Egypt
                [4 ]Department of Chest Medicine, Mansoura University Faculty of Medicine, ( https://ror.org/01k8vtd75) Mansoura, Egypt
                [5 ]Department of Microbiology, Faculty of Dentistry, Horus University, Damietta El Gadeeda, Egypt
                [6 ]Department of Pediatrics, Mansoura University Children’s Hospital, Mansoura University Faculty of Medicine, ( https://ror.org/01k8vtd75) 60 El Gomhouria Street, Mansoura, 35516 Egypt
                [7 ]Intern, Mansoura University Hospitals, Mansoura University, ( https://ror.org/01k8vtd75) Mansoura, Egypt
                [8 ]Neurology Resident at Fayoum General Hospital, Faiyum, Egypt
                [9 ]Mansoura Nephrology and Dialysis Unit, Internal Medicine Department, Mansoura University Faculty of Medicine, ( https://ror.org/01k8vtd75) Mansoura, Egypt
                Author information
                http://orcid.org/0000-0001-7047-076X
                Article
                2298
                10.1186/s12985-024-02298-x
                10807154
                38263160
                caf76f1c-4aca-463d-93cd-a7f619fc2ebf
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 August 2023
                : 16 January 2024
                Funding
                Funded by: Mansoura University
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Microbiology & Virology
                ace2,tmprss2,polymorphism,covid-19,genotyping,egypt
                Microbiology & Virology
                ace2, tmprss2, polymorphism, covid-19, genotyping, egypt

                Comments

                Comment on this article