7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Prophage and Plasmid Mobilome as a Likely Driver of Mycobacterium abscessus Diversity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterium abscessus is an important emerging pathogen that is challenging to treat with current antibiotic regimens. There is substantial genomic variation in M. abscessus clinical isolates, but little is known about how this influences pathogenicity and in vivo growth.

          ABSTRACT

          Mycobacterium abscessus is an emerging pathogen that is often refractory to antibiotic control. Treatment is further complicated by considerable variation among clinical isolates in both their genetic constitution and their clinical manifestations. Here, we show that the prophage and plasmid mobilome is a likely contributor to this variation. Prophages and plasmids are common, abundant, and highly diverse, and code for large repertoires of genes influencing virulence, antibiotic susceptibility, and defense against viral infection. At least 85% of the strains we describe carry one or more prophages, representing at least 17 distinct and diverse sequence “clusters,” integrated at 18 different attB locations. The prophages code for 19 distinct configurations of polymorphic toxin and toxin-immunity systems, each with WXG-100 motifs for export through type VII secretion systems. These are located adjacent to attachment junctions, are lysogenically expressed, and are implicated in promoting growth in infected host cells. Although the plethora of prophages and plasmids confounds the understanding of M. abscessus pathogenicity, they also provide an abundance of tools for M. abscessus engineering.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads

          The Illumina DNA sequencing platform generates accurate but short reads, which can be used to produce accurate but fragmented genome assemblies. Pacific Biosciences and Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can produce complete genome assemblies, but the sequencing is more expensive and error-prone. There is significant interest in combining data from these complementary sequencing technologies to generate more accurate “hybrid” assemblies. However, few tools exist that truly leverage the benefits of both types of data, namely the accuracy of short reads and the structural resolving power of long reads. Here we present Unicycler, a new tool for assembling bacterial genomes from a combination of short and long reads, which produces assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assembly graph from short reads using the de novo assembler SPAdes and then simplifies the graph using information from short and long reads. Unicycler uses a novel semi-global aligner to align long reads to the assembly graph. Tests on both synthetic and real reads show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid assemblers, even when long-read depth and accuracy are low. Unicycler is open source (GPLv3) and available at github.com/rrwick/Unicycler.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PHASTER: a better, faster version of the PHAST phage search tool

            PHASTER (PHAge Search Tool – Enhanced Release) is a significant upgrade to the popular PHAST web server for the rapid identification and annotation of prophage sequences within bacterial genomes and plasmids. Although the steps in the phage identification pipeline in PHASTER remain largely the same as in the original PHAST, numerous software improvements and significant hardware enhancements have now made PHASTER faster, more efficient, more visually appealing and much more user friendly. In particular, PHASTER is now 4.3× faster than PHAST when analyzing a typical bacterial genome. More specifically, software optimizations have made the backend of PHASTER 2.7X faster than PHAST, while the addition of 80 CPUs to the PHASTER compute cluster are responsible for the remaining speed-up. PHASTER can now process a typical bacterial genome in 3 min from the raw sequence alone, or in 1.5 min when given a pre-annotated GenBank file. A number of other optimizations have also been implemented, including automated algorithms to reduce the size and redundancy of PHASTER's databases, improvements in handling multiple (metagenomic) queries and higher user traffic, along with the ability to perform automated look-ups against 14 000 previously PHAST/PHASTER annotated bacterial genomes (which can lead to complete phage annotations in seconds as opposed to minutes). PHASTER's web interface has also been entirely rewritten. A new graphical genome browser has been added, gene/genome visualization tools have been improved, and the graphical interface is now more modern, robust and user-friendly. PHASTER is available online at www.phaster.ca.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Consed: a graphical tool for sequence finishing.

              Sequencing of large clones or small genomes is generally done by the shotgun approach (Anderson et al. 1982). This has two phases: (1) a shotgun phase in which a number of reads are generated from random subclones and assembled into contigs, followed by (2) a directed, or finishing phase in which the assembly is inspected for correctness and for various kinds of data anomalies (such as contaminant reads, unremoved vector sequence, and chimeric or deleted reads), additional data are collected to close gaps and resolve low quality regions, and editing is performed to correct assembly or base-calling errors. Finishing is currently a bottleneck in large-scale sequencing efforts, and throughput gains will depend both on reducing the need for human intervention and making it as efficient as possible. We have developed a finishing tool, consed, which attempts to implement these principles. A distinguishing feature relative to other programs is the use of error probabilities from our programs phred and phrap as an objective criterion to guide the entire finishing process. More information is available at http:// www.genome.washington.edu/consed/consed. html.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                mBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                30 March 2021
                Mar-Apr 2021
                : 12
                : 2
                : e03441-20
                Affiliations
                [a ]Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
                University of Massachusetts Amherst
                Author notes
                Address correspondence to Graham F. Hatfull, gfh@ 123456pitt.edu .

                For a companion article on this topic, see https://doi.org/10.1128/mBio.03431-20.

                Author information
                https://orcid.org/0000-0001-7838-3257
                https://orcid.org/0000-0001-6894-2748
                https://orcid.org/0000-0002-6705-6821
                Article
                mBio03441-20
                10.1128/mBio.03441-20
                8092301
                33785627
                cb07fa8c-104b-405c-bb2e-b4ca98683068
                Copyright © 2021 Dedrick et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 7 December 2020
                : 18 February 2021
                Page count
                supplementary-material: 4, Figures: 5, Tables: 2, Equations: 0, References: 63, Pages: 18, Words: 10031
                Funding
                Funded by: HHS | National Institutes of Health (NIH), https://doi.org/10.13039/100000002;
                Award ID: GM131729
                Award ID: AI151264
                Award Recipient :
                Funded by: Cystic Fibrosis Research (CFRI), https://doi.org/10.13039/100016616;
                Award ID: HATFUL19GO
                Award Recipient :
                Funded by: Howard Hughes Medical Institute (HHMI), https://doi.org/10.13039/100000011;
                Award ID: GT12053
                Award Recipient :
                Funded by: Fowler Fund for Phage Research;
                Award ID: None
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                March/April 2021

                Life sciences
                mycobacterium abscessus,prophages,bacteriophages,plasmids
                Life sciences
                mycobacterium abscessus, prophages, bacteriophages, plasmids

                Comments

                Comment on this article