2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Central expression of synaptophysin and synaptoporin in nociceptive afferent subtypes in the dorsal horn

      research-article
      1 , 2 , 3 , 1 , 2 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Central sprouting of nociceptive afferents in response to neural injury enhances excitability of nociceptive pathways in the central nervous system, often causing pain. A reliable quantification of central projections of afferent subtypes and their synaptic terminations is essential for understanding neural plasticity in any pathological condition. We previously characterized central projections of cutaneous nociceptive A and C fibers, selectively labeled with cholera toxin subunit B (CTB) and Isolectin B4 (IB4) respectively, and found that they expressed a general synaptic molecule, synaptophysin, largely depending on afferent subtypes (A vs. C fibers) across thoracic dorsal horns. The current studies extended the central termination profiles of nociceptive afferents with synaptoporin, an isoform of synaptophysin, known to be preferentially expressed in C fibers in lumbar dorsal root ganglions. Our findings demonstrated that synaptophysin was predominantly expressed in both peptidergic and IB4-binding C fiber populations in superficial laminae of the thoracic dorsal horn. Cutaneous IB4-labeled C fibers showed comparable expression levels of both isoforms, while cutaneous CTB-labeled A fibers exclusively expressed synaptophysin. These data suggest that central expression of synaptophysin consistently represents synaptic terminations of projecting afferents, at least in part, including nociceptive A-delta and C fibers in the dorsal horn.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Unmyelinated Low Threshold Mechanoreceptors are Required for Injury-induced Mechanical Hypersensitivity

          Mechanical pain contributes to the morbidity associated with inflammation and trauma, but primary sensory neurons that convey the sensation of acute and persistent mechanical pain have not been identified. Dorsal root ganglion (DRG) neurons transmit sensory information to the spinal cord using the excitatory transmitter glutamate1, a process that depends on glutamate transport into synaptic vesicles for regulated exocytotic release. Here we report that a small subset of cells in the DRG expresses the low abundance vesicular glutamate transporter VGLUT3. In the dorsal horn of the spinal cord, these afferents project to lamina I and the innermost layer of lamina II, which has previously been implicated in persistent pain caused by injury2. Since the different VGLUT isoforms generally exhibit a nonredundant pattern of expression3, we used VGLUT3 knock-out (KO) mice to assess the role of VGLUT3+ primary afferents in the behavioral response to somatosensory input. The loss of VGLUT3 specifically impairs mechanical pain sensation and in particular the mechanical hypersensitivity to normally innocuous stimuli that accompanies inflammation, nerve injury and trauma. Direct recording from VGLUT3+ neurons in the DRG further identifies them as a poorly understood population of unmyelinated, low threshold mechanoreceptors (C-LTMRs)4,5. The analysis of VGLUT3 KO mice now indicates a critical role for C-LTMRs in the mechanical hypersensitivity caused by injury.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Tackling pain at the source: new ideas about nociceptors.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life.

              We have tested the role of glial cell line-derived neurotrophic factor (GDNF) in regulating a group of putatively nociceptive dorsal root ganglion (DRG) neurons that do not express calcitonin gene-related peptide (CGRP) and that downregulate the nerve growth factor (NGF) receptor tyrosine kinase, TrkA, after birth. We show that mRNA and protein for the GDNF receptor tyrosine kinase, Ret, are expressed in the DRG in patterns that differ markedly from those of any of the neurotrophin receptors. Most strikingly, a population of small neurons initiates expression of Ret between embryonic day 15.5 and postnatal day 7.5 and maintains Ret expression into adulthood. These Ret-expressing small neurons are selectively labeled by the lectin IB4 and project to lamina IIi of the dorsal horn. Ret-expressing neurons also express the glycosyl-phosphatidyl inositol-linked (GPI-linked) GDNF binding component GDNFR-alpha and retrogradely transport 125I-GDNF, indicating the presence of a biologically active GDNF receptor complex. In vitro, GDNF supports the survival of small neurons that express Ret and bind IB4 while failing to support the survival of neurons expressing TrkA and CGRP. Together, our findings suggest that IB4-binding neurons switch from dependence on NGF in embryonic life to dependence on GDNF in postnatal life and are likely regulated by GDNF in maturity.
                Bookmark

                Author and article information

                Contributors
                hlee@umc.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 March 2019
                12 March 2019
                2019
                : 9
                : 4273
                Affiliations
                [1 ]ISNI 0000 0004 1937 0407, GRID grid.410721.1, Department of Neurobiology and Anatomical Sciences, , University of Mississippi Medical Center, ; Jackson, MS 39216 USA
                [2 ]ISNI 0000 0004 0419 9483, GRID grid.413879.0, Research Service, G.V. (Sonny) Montgomery VA Medical Center, ; Jackson, MS 39216 USA
                [3 ]ISNI 0000 0004 1937 0407, GRID grid.410721.1, School of Medicine, , University of Mississippi Medical Center, ; Jackson, MS 39216 USA
                Author information
                http://orcid.org/0000-0002-6985-0690
                Article
                40967
                10.1038/s41598-019-40967-y
                6414693
                30862809
                cb19ee95-6984-4f0a-aa34-92007e36c4d4
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 November 2018
                : 20 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article