1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LC-MS/MS-Based Proteomics Approach for the Identification of Candidate Serum Biomarkers in Patients with Narcolepsy Type 1

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Narcolepsy type 1 (NT1) is the most common type of narcolepsy known to be caused by the loss of specific neurons responsible for producing peptide neurotransmitters (orexins/hypocretins), resulting in a sleep-wake cycle disorder. It is characterized by its association with cataplexy and abnormalities in rapid eye movement. To date, no cure has been established for this life-threatening condition. Misdiagnosis of NT1 is also quite common, although it is not exceedingly rare. Therefore, successfully identifying candidate serum biomarkers for NT1 would be a head start for accurate diagnosis and development of therapeutics for this disorder. This study aims to identify such potential serum biomarkers. A depletion protocol was employed for 27 human serum samples (16 NT1 and 11 healthy controls), followed by applying LC-MS/MS bottom-up proteomics analysis, then LC-PRM-MS for validation. The comparison of the proteome profiles of the low-abundant proteins in the samples was then investigated based on age, sex, sample groups, and the presence of the Human Leukocyte Antigen (HLA) DQB1*0602 allele. The results were tracked to gene expression studies as well as system biology to identify key proteins and understand their relationship in the pathogenesis of NT1. Our results revealed 36 proteins significantly and differentially expressed. Among the impaired pathways and bioprocesses, the complement activation pathway is impaired by six of the differentially expressed proteins (DEPs). They are coded by the genes C2, CFB, C5, C1R, C1S, and MASP1, while 11 DEPs are involved in Acute Phase Response Signaling (APRS), which are coded by the genes FN1, AMBP, APOH, CFB, CP, ITIH2, C5, C2, F2, C1, and ITIH4. The combined AUCs of the downregulated and upregulated DEPs are 0.95 and 0.76, respectively. Overall, this study reveals potential serum-protein biomarkers of NT1 and explains the possible correlation between the biomarkers and pathophysiological effects, as well as important biochemical pathways involved in NT1.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 variants, spike mutations and immune escape

          Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets. The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ShinyGO: a graphical gene-set enrichment tool for animals and plants

            Gene lists are routinely produced from various omic studies. Enrichment analysis can link these gene lists with underlying molecular pathways and functional categories such as gene ontology (GO) and other databases. To complement existing tools, we developed ShinyGO based on a large annotation database derived from Ensembl and STRING-db for 59 plant, 256 animal, 115 archeal and 1678 bacterial species. ShinyGO’s novel features include graphical visualization of enrichment results and gene characteristics, and application program interface access to KEGG and STRING for the retrieval of pathway diagrams and protein–protein interaction networks. ShinyGO is an intuitive, graphical web application that can help researchers gain actionable insights from gene-sets. http://ge-lab.org/go/. Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of protein subcellular localization.

              Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.
                Bookmark

                Author and article information

                Contributors
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                March 2023
                February 23 2023
                : 13
                : 3
                : 420
                Article
                10.3390/biom13030420
                cb2c52c7-8bec-4310-8074-cbcc8b1c46dc
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article