2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xia-Gibbs Syndrome: A Review of Literature

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xia-Gibbs syndrome (XGS) is a rare genetic disorder that has been discovered as a distinct clinical entity in the recent past. The occurrence has been attributed to the mutation of AT Hook DNA binding motif Containing 1 (AHDC1) gene that is carried on chromosome 1p36. The concerned gene participates in deoxyribonucleic acid (DNA) repair apart from other crucial functions. The mutation results in dysfunction that leads to neurodevelopmental delay. The spectrum of manifestations constitutes intellectual disabilities, hypotonia, expressive language delay, sleep difficulties, and short stature. Dysmorphic facial features include depressed nasal bridge, hypertelorism, down-slanting or up-slanting palpebral fissures, horizontal eyebrows, dysplastic dentition, thin upper lip vermilion, and micrognathia. The phenotype is still expanding. The condition may range from mild to severe dysfunction depending on the area and site of genetic aberration but variation is evident. Thus, the correlation between genotype and phenotype is largely unclear. XGS should be considered as a differential diagnosis for patients presenting with intellectual as well as developmental disabilities. Whole-exome sequencing (WES) is the genetic test that is largely used for the confirmation of diagnosis. Less is known about the natural history as only a few adults with XGS have been documented in the literature. Age-appropriate cancer screening is recommended for patients with XGS as the gene mutation alters DNA repair mechanisms that may trigger tumour formation. The management of patients diagnosed with XGS is an area that needs investigation. Though use of growth hormone replacement therapy and physiotherapy intervention have been reported as effective in previous studies, research on effective means of care of these patients is warranted on a larger number of patients. We present a review of current literature on what is known about XGS that would facilitate to identify knowledge gaps for paving a way for further studies. This, in turn, will help in provision of early and effective rehabilitation services for patients with XGS.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomics. Tissue-based map of the human proteome.

            Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. Copyright © 2015, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genetic effects on gene expression across human tissues

              (2017)
              Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                29 December 2020
                December 2020
                : 12
                : 12
                : e12352
                Affiliations
                [1 ] Physiotherapy, Datta Meghe Institute of Medical Sciences, Wardha, IND
                [2 ] Paediatric Neurology, Kids Care Paediatric Neurology Center, Raipur, IND
                Author notes
                Article
                10.7759/cureus.12352
                7839808
                33520547
                cb30e344-b72c-44d5-9781-4481a2bd0f55
                Copyright © 2020, Goyal et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 December 2020
                Categories
                Neurology
                Pediatrics

                xia-gibbs syndrome,rehabilitation,rare genetic disorder,whole-exome sequencing,paediatric neurology,growth hormone replacement therapy,neurodevelopmental treatment,physiotherapy

                Comments

                Comment on this article