36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How does visual language affect crossmodal plasticity and cochlear implant success?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Children with CI perform poorer than their hearing peers in educational settings.

          • CI sensitive periods are influenced by language and auditory deprivation.

          • Reorganisation of auditory cortex is an inevitable consequence of deafness.

          • Visual language does not influence crossmodal plasticity.

          • Early language deprivation has deleterious consequences for language learning.

          Abstract

          Cochlear implants (CI) are the most successful intervention for ameliorating hearing loss in severely or profoundly deaf children. Despite this, educational performance in children with CI continues to lag behind their hearing peers. From animal models and human neuroimaging studies it has been proposed the integrative functions of auditory cortex are compromised by crossmodal plasticity. This has been argued to result partly from the use of a visual language. Here we argue that ‘cochlear implant sensitive periods’ comprise both auditory and language sensitive periods, and thus cannot be fully described with animal models. Despite prevailing assumptions, there is no evidence to link the use of a visual language to poorer CI outcome. Crossmodal reorganisation of auditory cortex occurs regardless of compensatory strategies, such as sign language, used by the deaf person. In contrast, language deprivation during early sensitive periods has been repeatedly linked to poor language outcomes. Language sensitive periods have largely been ignored when considering variation in CI outcome, leading to ill-founded recommendations concerning visual language in CI habilitation.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language.

          Despite intensive work on language-brain relations, and a fairly impressive accumulation of knowledge over the last several decades, there has been little progress in developing large-scale models of the functional anatomy of language that integrate neuropsychological, neuroimaging, and psycholinguistic data. Drawing on relatively recent developments in the cortical organization of vision, and on data from a variety of sources, we propose a new framework for understanding aspects of the functional anatomy of language which moves towards remedying this situation. The framework posits that early cortical stages of speech perception involve auditory fields in the superior temporal gyrus bilaterally (although asymmetrically). This cortical processing system then diverges into two broad processing streams, a ventral stream, which is involved in mapping sound onto meaning, and a dorsal stream, which is involved in mapping sound onto articulatory-based representations. The ventral stream projects ventro-laterally toward inferior posterior temporal cortex (posterior middle temporal gyrus) which serves as an interface between sound-based representations of speech in the superior temporal gyrus (again bilaterally) and widely distributed conceptual representations. The dorsal stream projects dorso-posteriorly involving a region in the posterior Sylvian fissure at the parietal-temporal boundary (area Spt), and ultimately projecting to frontal regions. This network provides a mechanism for the development and maintenance of "parity" between auditory and motor representations of speech. Although the proposed dorsal stream represents a very tight connection between processes involved in speech perception and speech production, it does not appear to be a critical component of the speech perception process under normal (ecologically natural) listening conditions, that is, when speech input is mapped onto a conceptual representation. We also propose some degree of bi-directionality in both the dorsal and ventral pathways. We discuss some recent empirical tests of this framework that utilize a range of methods. We also show how damage to different components of this framework can account for the major symptom clusters of the fluent aphasias, and discuss some recent evidence concerning how sentence-level processing might be integrated into the framework.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regional differences in synaptogenesis in human cerebral cortex.

            The formation of synaptic contacts in human cerebral cortex was compared in two cortical regions: auditory cortex (Heschl's gyrus) and prefrontal cortex (middle frontal gyrus). Synapse formation in both cortical regions begins in the fetus, before conceptual age 27 weeks. Synaptic density increases more rapidly in auditory cortex, where the maximum is reached near postnatal age 3 months. Maximum synaptic density in middle frontal gyrus is not reached until after age 15 months. Synaptogenesis occurs concurrently with dendritic and axonal growth and with myelination of the subcortical white matter. A phase of net synapse elimination occurs late in childhood, earlier in auditory cortex, where it has ended by age 12 years, than in prefrontal cortex, where it extends to midadolescence. Synaptogenesis and synapse elimination in humans appear to be heterochronous in different cortical regions and, in that respect, appears to differ from the rhesus monkey, where they are concurrent. In other respects, including overproduction of synaptic contacts in infancy, persistence of high levels of synaptic density to late childhood or adolescence, the absolute values of maximum and adult synaptic density, and layer specific differences, findings in the human resemble those in rhesus monkeys.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical period regulation.

              Neuronal circuits are shaped by experience during critical periods of early postnatal life. The ability to control the timing, duration, and closure of these heightened levels of brain plasticity has recently become experimentally accessible, especially in the developing visual system. This review summarizes our current understanding of known critical periods across several systems and species. It delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience (not simply age), special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration, as well as use of distinct molecular mechanisms across brain regions and the potential for reactivation in adulthood. A deeper understanding of critical periods will open new avenues to "nurture the brain"-from international efforts to link brain science and education to improving recovery from injury and devising new strategies for therapy and lifelong learning.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurosci Biobehav Rev
                Neurosci Biobehav Rev
                Neuroscience and Biobehavioral Reviews
                Pergamon Press
                0149-7634
                1873-7528
                1 December 2013
                December 2013
                : 37
                : 10
                : 2621-2630
                Affiliations
                [a ]Cognitive, Perceptual and Brain Sciences, 26 Bedford Way, University College London, London WC1H 0AP, UK
                [b ]Deafness, Cognition and Language Research Centre, 49 Gordon Square, University College London, London WC1H 0PD, UK
                [c ]Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Sweden
                Author notes
                [* ]Corresponding author. c.rebeccalyness@ 123456gmail.com
                Article
                S0149-7634(13)00201-7
                10.1016/j.neubiorev.2013.08.011
                3989033
                23999083
                cb440d0e-99f7-4c43-9796-e38dac25078a
                © 2013 Elsevier Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

                History
                : 22 April 2013
                : 7 August 2013
                : 21 August 2013
                Categories
                Review

                Neurosciences
                cochlear implant,deafness,functional decoupling,crossmodal reorganisation,delayed/insecure language acquisition

                Comments

                Comment on this article