1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fundus Autofluorescence in Posterior and Panuveitis—An Under-Estimated Imaging Technique: A Review and Case Series

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fundus autofluorescence (FAF) is a prompt and non-invasive imaging modality helpful in detecting pathological abnormalities within the retina and the choroid. This narrative review and case series provides an overview on the current application of FAF in posterior and panuveitis. The literature was reviewed for articles on lesion characteristics on FAF of specific posterior and panuveitis entities as well as benefits and limitations of FAF for diagnosing and monitoring disease. FAF characteristics are described for non-infectious and infectious uveitis forms as well as masquerade syndromes. Dependent on the uveitis entity, FAF is of diagnostic value in detecting disease and following the clinical course. Currently available FAF modalities which differ in excitation wavelengths can provide different pathological insights depending on disease entity and activity. Further studies on the comparison of FAF modalities and their individual value for uveitis diagnosis and monitoring are warranted.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Fundus autofluorescence imaging: review and perspectives.

          Fundus autofluorescence (FAF) imaging is a novel imaging method that allows topographic mapping of lipofuscin distribution in the retinal pigment epithelium cell monolayer as well as of other fluorophores that may occur with disease in the outer retina and the subneurosensory space. Excessive accumulation of lipofuscin granules in the lysosomal compartment of retinal pigment epithelium cells represents a common downstream pathogenetic pathway in various hereditary and complex retinal diseases, including age-related macular degeneration. FAF imaging has been shown to be useful with regard to understanding of pathophysiologic mechanisms, diagnostics, phenotype-genotype correlation, identification of predictive markers for disease progression, and monitoring of novel therapies. FAF imaging gives information above and beyond that obtained by conventional imaging methods, such as fundus photography, fluorescein angiography, and optical coherence tomography. Its clinical value coupled with its simple, efficient, and noninvasive nature is increasingly appreciated. This review summarizes basic principles and FAF findings in various retinal diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.

            Optical measurements of the pigments of the retinal pigment epithelium (RPE) and choroid were made on 38 human autopsy eyes of both blacks and whites, varying in age between 2 wk and 90 yr old. Lipofuscin in melanin-bleached RPE was measured as fluorescence at 470 mm following excitation at 365 nm and was found to be proportional to fluorescence measured at 560 nm in unbleached tissue. Transmission measurements of RPE and choroidal melanin were converted and expressed as optical density units. The choroidal melanin content increased from the periphery to the posterior pole. RPE melanin concentration decreased from the periphery to the posterior pole with an increase in the macula. Conversely, the amount of RPE lipofuscin increased from the periphery to the posterior pole with a consistent dip at the fovea. There was an inverse relationship between RPE lipofuscin concentration and RPE melanin concentration. The RPE melanin content was similar between whites and blacks. Lipofuscin concentration was significantly greater (P = 0.002) in the RPE of whites compared to blacks; whereas blacks had a significantly greater (P = 0.005) choroidal melanin content than whites. The amounts of both choroidal and RPE melanin showed a trend of decreasing content with aging, whereas the amount RPE lipofuscin tended to increase (whites greater than blacks). Per fundus area, the amount of choroidal melanin was always greater than that in the RPE. There was a statistically significant (P = 0.001) increase in RPE height with age, most marked in eyes of whites after age 50 and correlated with the increase in lipofuscin concentration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards metabolic mapping of the human retina.

              Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1 = 190 ps) originates from the retinal pigment epithelium and the second lifetime (t2 = 1,000 ps) from the neural retina. The lifetime t3 approximately 5.5 ns might be influenced by the long decay of the fluorescence in the crystalline lens. In vitro analysis of the spectral properties of expected fluorophores under the condition of the living eye lightens the interpretation of in vivo measurements. Taking into account the transmission of the ocular media, the excitation of NADH is unlikely at the fundus. Copyright 2007 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMHC
                Biomolecules
                Biomolecules
                MDPI AG
                2218-273X
                May 2024
                April 25 2024
                : 14
                : 5
                : 515
                Article
                10.3390/biom14050515
                cb503ccb-60b3-4849-98c1-1bf4c217c8e3
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article