6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DETERMINACIÓN DEL EFECTO PROBIÓTICO IN VITRO DE Lactobacillus gasseri SOBRE UNA CEPA DE Staphylococcus epidermidis Translated title: DETERMINATION OF THE PROBIOTIC IN VITRO EFFECT OF Lactobacillus gasseri ON A Staphylococcus epidermidis STRAIN

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMEN Debido a las propiedades probióticas características de las bacterias ácido lácticas, tales como generar compuestos derivados de su fermentación capaces de inhibir múltiples organismos patógenos, hasta crear un ambiente desfavorable para los mismos y finalmente ser usadas como alternativas al uso de medicamentos para tratar y prevenir diversas patologías, en el presente estudio, se buscó evaluar las características probióticas de L. gasseri sobre S. epidermidis en condiciones in vitro. Se determinó la susceptibilidad de las dos cepas a diferentes antibióticos; el efecto de inhibición de L. gasseri y su sobrenadante sobre S. epidermidis; crecimiento de la cepa láctica a diferentes pH, temperatura, sales biliares y bilis bovina; también se estableció la cinética de fermentación y en ella se determinó conteo de microorganismos viables en placa, pH, consumo de azúcar, consumo de proteína y porcentaje de ácido láctico; finalmente mediante HPLC-DAD para L. gasseri se determinó péptidos y ácido láctico, y en el caso de aminoácidos en el sobrenadante se determinó para las dos cepas mediante HPLC-PDA. Se encontró resistencia de ambas cepas a los antibióticos gentamicina y dicloxacilina. La cepa láctica y el sobrenadante inhibieron el crecimiento de S. epidermidis. El crecimiento fue adecuado para las diferentes variables con valores entre 1,8 x 109 a 3,0 x 1012 UFC/150 μl. Se observó la fase exponencial a las 12 horas con un valor de 3 x 1011 UFC/150 μl, con valores de 4,296, 1,26%, 2,032 mg/l y 0,65 mg/l para pH, ácido láctico, consumo de azúcar y consumo de proteína respectivamente. Por último, se identificaron en el sobrenadante de L. gasseri mediante HPLC-DAD el péptido VAL-TIR-VAL con un valor de 0,73 mg/ml, 11,70 g/l de ácido láctico. Los resultados demuestran que Lactobacillus gasseri posee características probióticas sobre S. epidermidis en condiciones in vitro.

          Translated abstract

          ABSTRACT Due to the characteristic probiotic properties of lactic acid bacteria such as the generation of compounds derived from fermentation, which can inhibit multiple pathogenic organisms to create an unfavorable environment for them and finally to be used as an alternative to the use of drugs to treat and prevent various diseases. The present study sought to assess probiotic characteristics of L. gasseri on S. epidermidis under in vitro conditions. The susceptibility of both strains to different antibiotics, the inhibitory effect of L. gasseri and supernatant on S. epidermidis, and the growth of the lactic strain at different pH, temperature, bile salts and bovine bile were determined. The fermentation kinetics was established, and the count of viable microorganisms in plaque, pH, sugar consumption, consumption of protein and percentage of lactic acid was defined. Finally, peptides and lactic acid were determined using HPLC-DAD for L. gasseri, and in the case of amino acids in the supernatant, these were determined with HPLC-PDA for the two strains. The resistance of both strains to the antibiotics gentamicin and dicloxacillin was found. The lactic strain and the supernatant inhibited the growth of S. epidermidis. The growth was suitable for the different variables with values between 1.8 x 109 and 3.0 x 1012 CFU/150 μl. The exponential phase was observed at 12 hours with a value of 3 x 1011 CFU/150 μl, with values of 4.296, 1.26%, 2.032 mg/l and 0.65 mg/l for pH, lactic acid, sugar consumption and protein consumption, respectively. Finally, the peptide VAL-TIR-VAL with a value of 0.73 mg/ml, 11.7 g/l of lactic acid, and the amino acid tyrosine were identified in the supernatant of L. gasseri by HPLC-DAD. The results show that Lactobacillus gasseri have probiotic characteristics on S. epidermidis under in vitro conditions.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics of bacteriocins produced by lactic acid bacteria.

          Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human intestinal bacteria as reservoirs for antibiotic resistance genes.

            Human intestinal bacteria have many roles in human health, most of which are beneficial or neutral for the host. In this review, we explore a more sinister side of intestinal bacteria; their role as traffickers in antibiotic resistance genes. Evidence is accumulating to support the hypothesis that intestinal bacteria not only exchange resistance genes among themselves but might also interact with bacteria that are passing through the colon, causing these bacteria to acquire and transmit antibiotic resistance genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of probiotic cultures in the control of gastrointestinal health.

              R D Rolfe (2000)
              The use of probiotics to enhance intestinal health has been proposed for many years. Probiotics are traditionally defined as viable microorganisms that have a beneficial effect in the prevention and treatment of specific pathologic conditions when they are ingested. There is a relatively large volume of literature that supports the use of probiotics to prevent or treat intestinal disorders. However, the scientific basis of probiotic use has been firmly established only recently, and sound clinical studies have begun to be published. Currently, the best-studied probiotics are the lactic acid bacteria, particularly Lactobacillus sp. and Bifidobacterium sp. However, other organisms used as probiotics in humans include Escherichia coli, Streptococcus sp., Enterococcus sp., Bacteroides sp., Bacillus sp., Propionibacterium sp. and various fungi. Some probiotic preparations contain mixtures of more than one bacterial strain. Probiotics have been examined for their effectiveness in the prevention and treatment of a diverse spectrum of gastrointestinal disorders such as antibiotic-associated diarrhea (including Clostridium difficile-associated intestinal disease), infectious bacterial and viral diarrhea (including diarrhea caused by rotavirus, Shigella, Salmonella, enterotoxigenic E. coli, Vibrio cholerae and human immunodeficiency virus/acquired immunodeficiency disorder, enteral feeding diarrhea, Helicobacter pylori gastroenteritis, sucrase maltase deficiency, inflammatory bowel disease, irritable bowel syndrome, small bowel bacterial overgrowth and lactose intolerance. Probiotics have been found to inhibit intestinal bacterial enzymes involved in the synthesis of colonic carcinogens. There are many mechanisms by which probiotics enhance intestinal health, including stimulation of immunity, competition for limited nutrients, inhibition of epithelial and mucosal adherence, inhibition of epithelial invasion and production of antimicrobial substances. Probiotics represent an exciting prophylactic and therapeutic advance, although additional investigations must be undertaken before their role in intestinal health can be delineated clearly.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Journal
                biosa
                Biosalud
                Biosalud
                Universidad de Caldas (Manizales, Caldas, Colombia )
                1657-9550
                December 2017
                : 16
                : 2
                : 53-69
                Affiliations
                [1] Pasto Nariño orgnameUniversidad de Nariño orgdiv1Facultad de Ciencias Pecuarias Colombia
                [2] Pasto Nariño orgnameUniversidad de Nariño orgdiv1Facultad de Ciencias Pecuarias Colombia
                Article
                S1657-95502017000200053
                10.17151/biosa.2017.16.2.6
                cba20873-a56f-4dd9-a783-f7ab88f0cf6f

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 27 July 2017
                : 17 April 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 51, Pages: 17
                Product

                SciELO Colombia


                bacteria láctica,inhibición,cepa patógena,probiótico,Lactic bacteria,inhibition,pathogenic strain,probiotic

                Comments

                Comment on this article