3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrative taxonomic approach to reveal the status of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in Austria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species of the genus Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) are obligate endoparasites infesting mostly freshwater fish. Morphological identification is challenging due to high intraspecific variations. The use of molecular analyses enabled new insights into the diversity and revealed high cryptic presence and unknown distribution patterns for various European species. In Austria only one species, Pomphorhynchus laevis (Müller, 1776) , has been reported so far. We conduct an integrative analysis of Pomphorhynchus in Austria with a combination of morphological and molecular methods. Our results revealed the presence of three species of Pomphorhynchus in Austrian waters: Pomphorhynchus laevis, Pomphorhynchus tereticollis (Rudolphi, 1809) and Pomphorhynchus bosniacus Kiskároly and Čanković, 1967. While P. bosniacus was the predominant species in the Danube, P. laevis was recorded exclusively in Styria. Pomphorhynchus tereticollis occurred mainly in rivers of Styria except for one individual found in the Danube. We document the first occurrence of P. bosniacus and P. tereticollis in Austria. We found a high intraspecific haplotype variation in P. bosniacus suggesting that the species has a longer history in Central and Western Europe. It was previously misidentified as P. laevis, which is also true for P. tereticollis. A large number of hosts examined were infected with only juvenile and cystacanth stages suggesting paratenic infections. Our study highlights the importance of using an integrative taxonomic approach in the identification of species of Pomphorhynchus.

          Graphical abstract

          Highlights

          • First evidence of Pomphorhynchus tereticollis and Pomphorhynchus bosniacus in Austria.

          • Pomphorhynchus tereticollis showed a wide host range in comparison to P. bosniacus and P. laevis.

          • Presentation of an integrative taxonomic approach which should prevent misidentifications in future studies.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Classification of the acanthocephala.

          O Amin (2013)
          In 1985, Amin presented a new system for the classification of the Acanthocephala in Crompton and Nickol's (1985) book 'Biology of the Acanthocephala' and recognized the concepts of Meyer (1931, 1932, 1933) and Van Cleave (1936, 1941, 1947, 1948, 1949, 1951, 1952). This system became the standard for the taxonomy of this group and remains so to date. Many changes have taken place and many new genera and species, as well as higher taxa, have been described since. An updated version of the 1985 scheme incorporating new concepts in molecular taxonomy, gene sequencing and phylogenetic studies is presented. The hierarchy has undergone a total face lift with Amin's (1987) addition of a new class, Polyacanthocephala (and a new order and family) to remove inconsistencies in the class Palaeacanthocephala. Amin and Ha (2008) added a third order (and a new family) to the Palaeacanthocephala, Heteramorphida, which combines features from the palaeacanthocephalan families Polymorphidae and Heteracanthocephalidae. Other families and subfamilies have been added but some have been eliminated, e.g. the three subfamilies of Arythmacanthidae: Arhythmacanthinae Yamaguti, 1935; Neoacanthocephaloidinae Golvan, 1960; and Paracanthocephaloidinae Golvan, 1969. Amin (1985) listed 22 families, 122 genera and 903 species (4, 4 and 14 families; 13, 28 and 81 genera; 167, 167 and 569 species in Archiacanthocephala, Eoacanthocephala and Palaeacanthocephala, respectively). The number of taxa listed in the present treatment is 26 families (18% increase), 157 genera (29%), and 1298 species (44%) (4, 4 and 16; 18, 29 and 106; 189, 255 and 845, in the same order), which also includes 1 family, 1 genus and 4 species in the class Polyacanthocephala Amin, 1987, and 3 genera and 5 species in the fossil family Zhijinitidae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DNA damage in preserved specimens and tissue samples: a molecular assessment

            The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Soft Part 3D visualization by serial sectioning and computer reconstruction

                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Parasites Wildl
                Int J Parasitol Parasites Wildl
                International Journal for Parasitology: Parasites and Wildlife
                Elsevier
                2213-2244
                02 February 2019
                April 2019
                02 February 2019
                : 8
                : 145-155
                Affiliations
                [a ]Natural History Museum Vienna, Central Research Laboratories, Burgring 7, 1010, Vienna, Austria
                [b ]Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
                [c ]Natural History Museum Vienna, 3rd Zoological Department, Burgring 7, 1010, Vienna, Austria
                [d ]Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
                [e ]Umweltbundesamt, Spittelauer Lände 5, 1090, Vienna, Austria
                Author notes
                []Corresponding author. Central Research Laboratories, Burgring 7, 1010, Vienna, Austria. susanne.reier@ 123456nhm-wien.ac
                Article
                S2213-2244(18)30158-5
                10.1016/j.ijppaw.2019.01.009
                6369135
                30788212
                cbe454ff-357c-45a4-9030-72d3205ecd41
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 16 November 2018
                : 29 January 2019
                : 31 January 2019
                Categories
                Article

                acanthocephala,pomphorhynchus spp.,austria,fish,autofluorescence imaging,integrative taxonomy,3-d reconstruction

                Comments

                Comment on this article