5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candidate genes identification and RNA-seq based pathway analysis associated with primary angle-closure glaucoma with cataract

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cataract is commonly observed in patients with primary angle-closure glaucoma; however, its underlying pathological mechanisms remain unclear. This study aimed to improve our knowledge on the pathological processes involved in primary angle-closure glaucoma (PACG) by identifying potential prognostic genes associated with cataract progression.

          Methods

          Thirty anterior capsular membrane samples were collected from PACG patients with cataracts and age-related cataracts. Differentially expressed genes (DEGs) between these two cohorts were analyzed using high-throughput sequencing. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to screen the DEGs, and potential prognostic markers and their coexpression network were then predicted by bioinformatic analyses. The DEGs were further validated by reverse transcription-quantitative polymerase chain reaction.

          Results

          A total of 399 DEGs were found to be specifically associated with cataracts development in PACG patients, among which 177 and 221 DEGs were upregulated and downregulated, respectively. STRING and Cytoscape network analyses revealed seven genes— CTGF, FOS, CAV1, CYR61, ICAM1, EGR1, and NR4A1—that were remarkably enriched and mainly involved in the MAPK, PI3K/Akt, Toll-like receptor, and TNF signaling pathways. RT-qPCR-based validation further confirmed that the sequencing results were accurate and reliable.

          Conclusions

          Herein, we identified seven genes and their signaling pathways that may contribute to cataract progression in patients with high intraocular pressure. Taken together, our findings highlight new molecular mechanisms that may explain the high incidence of cataracts in PACG patients. In addition, the genes identified herein may represent new foundations for the development of therapeutic strategies for PACG with cataract.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12886-023-02950-0.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Primary open-angle glaucoma.

          Primary open-angle glaucoma is a progressive optic neuropathy and, perhaps, the most common form of glaucoma. Because the disease is treatable, and because the visual impairment caused by glaucoma is irreversible, early detection is essential. Early diagnosis depends on examination of the optic disc, retinal nerve fibre layer, and visual field. New imaging and psychophysical tests can improve both detection and monitoring of the progression of the disease. Recently completed long-term clinical trials provide convincing evidence that lowering intraocular pressure prevents progression at both the early and late stages of the disease. The degree of protection is related to the degree to which intraocular pressure is lowered. Improvements in therapy consist of more effective and better-tolerated drugs to lower intraocular pressure, and more effective surgical procedures. New treatments to directly treat and protect the retinal ganglion cells that are damaged in glaucoma are also in development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ICAM‐1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis

            ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master regulator of many essential cellular functions both at the onset and at the resolution of pathologic conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 has been of clinical and therapeutic interest for some time now; however, several attempts at inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PM 2.5 -induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway

              Background Epidemiological studies have shown that ambient air pollution is closely associated with increased respiratory inflammation and decreased lung function. Particulate matters (PMs) are major components of air pollution that damages lung cells. However, the mechanisms remain to be elucidated. This study examines the effects of PMs on intercellular adhesion molecule-1 (ICAM-1) expression and the related mechanisms in vitro and in vivo. Result The cytotoxicity, reactive oxygen species (ROS) generation, and monocyte adherence to A549 cells were more severely affected by treatment with O-PMs (organic solvent-extractable fraction of SRM1649b) than with W-PMs (water-soluble fraction of SRM1649b). We observed a significant increase in ICAM-1 expression by O-PMs, but not W-PMs. O-PMs also induced the phosphorylation of AKT, p65, and STAT3. Pretreating A549 cells with N-acetyl cysteine (NAC), an antioxidant, attenuated O-PMs-induced ROS generation, the phosphorylation of the mentioned kinases, and the expression of ICAM-1. Furthermore, an AKT inhibitor (LY294002), NF-κB inhibitor (BAY11–7082), and STAT3 inhibitor (Stattic) significantly down-regulated O-PMs-induced ICAM-1 expression as well as the adhesion of U937 cells to epithelial cells. Interleukin-6 (IL-6) was the most significantly changed cytokine in O-PMs-treated A549 cells according to the analysis of the cytokine antibody array. The IL-6 receptor inhibitor tocilizumab (TCZ) and small interfering RNA for IL-6 significantly reduced ICAM-1 secretion and expression as well as the reduction of the AKT, p65, and STAT3 phosphorylation in O-PMs-treated A549 cells. In addition, the intratracheal instillation of PMs significantly increased the levels of the ICAM-1 and IL-6 in lung tissues and plasma in WT mice, but not in IL-6 knockout mice. Pre-administration of NAC attenuated those PMs-induced adverse effects in WT mice. Furthermore, patients with chronic obstructive pulmonary disease (COPD) had higher plasma levels of ICAM-1 and IL-6 compared to healthy subjects. Conclusion These results suggest that PMs increase ICAM-1 expression in pulmonary epithelial cells in vitro and in vivo through the IL-6/AKT/STAT3/NF-κB signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12989-018-0240-x) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                oculistlingyu@hotmail.com
                Journal
                BMC Ophthalmol
                BMC Ophthalmol
                BMC Ophthalmology
                BioMed Central (London )
                1471-2415
                2 May 2023
                2 May 2023
                2023
                : 23
                : 192
                Affiliations
                [1 ]Department of Ophthalmology, The People’s Hospital of Wenjiang Chengdu, Chengdu, Sichuan Province 611130 China
                [2 ]GRID grid.410570.7, ISNI 0000 0004 1760 6682, Department of Ophthalmology, Daping Hospital, Army Medical Center, , Army Medical University, ; Chongqing, 40042 China
                Article
                2950
                10.1186/s12886-023-02950-0
                10152770
                cc21cbdd-3b10-4f2d-9784-479ccd3aa2dc
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 October 2022
                : 27 April 2023
                Funding
                Funded by: The National Nature Science Foundation of China
                Award ID: No.82070962
                Categories
                Research
                Custom metadata
                © The Author(s) 2023

                Ophthalmology & Optometry
                age-related cataract,bioinformatics,differentially expressed genes,primary angle-closure glaucoma

                Comments

                Comment on this article