3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Robust multi-input multi-output adaptive fuzzy terminal sliding mode control of deep brain stimulation in Parkinson’s disease: a simulation study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep brain stimulation (DBS) has become an effective therapeutic solution for Parkinson’s disease (PD). Adaptive closed-loop DBS can be used to minimize stimulation-induced side effects by automatically determining the stimulation parameters based on the PD dynamics. In this paper, by modeling the interaction between the neurons in populations of the thalamic, the network-level modulation of thalamic is represented in a standard canonical form as a multi-input multi-output (MIMO) nonlinear first-order system with uncertainty and external disturbances. A class of fast and robust MIMO adaptive fuzzy terminal sliding mode control (AFTSMC) has been presented for control of membrane potential of thalamic neuron populations through continuous adaptive DBS current applied to the thalamus. A fuzzy logic system (FLS) is used to estimate the unknown nonlinear dynamics of the model, and the weights of FLS are adjusted online to guarantee the convergence of FLS parameters to optimal values. The simulation results show that the proposed AFTSMC not only significantly produces lower tracking errors in comparison with the classical adaptive fuzzy sliding mode control (AFSMC), but also makes more robust and reliable outputs. The results suggest that the proposed AFTSMC provides a more robust and smooth control input which is highly desirable for hardware design and implementation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Deep brain stimulation: current challenges and future directions

          The clinical use of deep brain stimulation (DBS) is among the most important advances in the clinical neurosciences in the past two decades. As a surgical tool, DBS can directly measure pathological brain activity and can deliver adjustable stimulation for therapeutic effect in neurological and psychiatric disorders correlated with dysfunctional circuitry. The development of DBS has opened new opportunities to access and interrogate malfunctioning brain circuits and to test the therapeutic potential of regulating the output of these circuits in a broad range of disorders. Despite the success and rapid adoption of DBS, crucial questions remain, including which brain areas should be targeted and in which patients. This Review considers how DBS has facilitated advances in our understanding of how circuit malfunction can lead to brain disorders and outlines the key unmet challenges and future directions in the DBS field. Determining the next steps in DBS science will help to define the future role of this technology in the development of novel therapeutics for the most challenging disorders affecting the human brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Adaptive Deep Brain Stimulation In Advanced Parkinson Disease

            Objective: Brain–computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. Methods: We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Results: Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p < 0.001). aDBS was also more effective than no stimulation and random intermittent stimulation. Interpretation BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Ann Neurol 2013;74:449–457
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of deep brain stimulation.

              Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
                Bookmark

                Author and article information

                Contributors
                erouhani@iut.ac.ir
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 October 2021
                27 October 2021
                2021
                : 11
                : 21169
                Affiliations
                [1 ]GRID grid.411751.7, ISNI 0000 0000 9908 3264, Department of Electrical and Computer Engineering, , Isfahan University of Technology, ; 84156-83111 Isfahan, Iran
                [2 ]GRID grid.411748.f, ISNI 0000 0001 0387 0587, Department of Biomedical Engineering, School of Electrical Engineering, , Iran University of Science and Technology, ; Tehran, Iran
                Article
                365
                10.1038/s41598-021-00365-9
                8551209
                34707104
                cc54772c-84ad-4bd2-838c-56c1bebaac82
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 May 2021
                : 11 October 2021
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                biomedical engineering,computer modelling,control theory,differential equations,nonlinear dynamics,robustness,dynamical systems

                Comments

                Comment on this article