19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Translation in Giant Viruses: A Unique Mixture of Bacterial and Eukaryotic Termination Schemes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses.

          Author Summary

          Giant viruses, such as Mimivirus and Megavirus, have huge near-micron-sized particles and possess more genes than several cellular organisms. Furthermore their genomes encode functions not supposed to be in a virus, such as components of the protein translation apparatus. Since Lwoff in 1957, viruses are defined as ultimate obligate intracellular parasites from their need to hijack the peptide synthesis machinery of their host to replicate. We looked at the Mimivirus and Megavirus proteins that recognize the stop codons, the translation termination factors. We found that these genes contain two internal stop codons, meaning that their translation bypasses two distinct stop codons to produce a functional translation termination factor. These types of autoregulatory mechanisms are found in bacterial termination factors, although it involves only a single internal stop codon and not two, and are absent from their eukaryotic and archaeal homologs. Despite these bacterial-like features, giant viruses' termination factors have sequences that do not resemble bacterial genes but are clearly related to the eukaryotic and archaeal termination factors. Thus, giant viruses' termination factors surprisingly combine elements from eukaryotes/archaea and bacteria.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources

          Background In order to improve gene prediction, extrinsic evidence on the gene structure can be collected from various sources of information such as genome-genome comparisons and EST and protein alignments. However, such evidence is often incomplete and usually uncertain. The extrinsic evidence is usually not sufficient to recover the complete gene structure of all genes completely and the available evidence is often unreliable. Therefore extrinsic evidence is most valuable when it is balanced with sequence-intrinsic evidence. Results We present a fairly general method for integration of external information. Our method is based on the evaluation of hints to potentially protein-coding regions by means of a Generalized Hidden Markov Model (GHMM) that takes both intrinsic and extrinsic information into account. We used this method to extend the ab initio gene prediction program AUGUSTUS to a versatile tool that we call AUGUSTUS+. In this study, we focus on hints derived from matches to an EST or protein database, but our approach can be used to include arbitrary user-defined hints. Our method is only moderately effected by the length of a database match. Further, it exploits the information that can be derived from the absence of such matches. As a special case, AUGUSTUS+ can predict genes under user-defined constraints, e.g. if the positions of certain exons are known. With hints from EST and protein databases, our new approach was able to predict 89% of the exons in human chromosome 22 correctly. Conclusion Sensitive probabilistic modeling of extrinsic evidence such as sequence database matches can increase gene prediction accuracy. When a match of a sequence interval to an EST or protein sequence is used it should be treated as compound information rather than as information about individual positions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 1.2-megabase genome sequence of Mimivirus.

            We recently reported the discovery and preliminary characterization of Mimivirus, the largest known virus, with a 400-nanometer particle size comparable to mycoplasma. Mimivirus is a double-stranded DNA virus growing in amoebae. We now present its 1,181,404-base pair genome sequence, consisting of 1262 putative open reading frames, 10% of which exhibit a similarity to proteins of known functions. In addition to exceptional genome size, Mimivirus exhibits many features that distinguish it from other nucleocytoplasmic large DNA viruses. The most unexpected is the presence of numerous genes encoding central protein-translation components, including four amino-acyl transfer RNA synthetases, peptide release factor 1, translation elongation factor EF-TU, and translation initiation factor 1. The genome also exhibits six tRNAs. Other notable features include the presence of both type I and type II topoisomerases, components of all DNA repair pathways, many polysaccharide synthesis enzymes, and one intein-containing gene. The size and complexity of the Mimivirus genome challenge the established frontier between viruses and parasitic cellular organisms. This new sequence data might help shed a new light on the origin of DNA viruses and their role in the early evolution of eukaryotes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A giant virus in amoebae.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2012
                December 2012
                13 December 2012
                : 8
                : 12
                : e1003122
                Affiliations
                [1]CNRS, Aix-Marseille Université, IGS UMR7256, Marseille, France
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SJ ML. Performed the experiments: SJ ML. Analyzed the data: SJ CA ML. Wrote the paper: SJ J-MC ML.

                Article
                PGENETICS-D-12-01732
                10.1371/journal.pgen.1003122
                3521657
                23271980
                cc79a3ef-68a7-49e9-a740-b4b59828472b
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 July 2012
                : 12 October 2012
                Page count
                Pages: 12
                Funding
                The work was supported by ANR ( http://www.agence-nationale-recherche.fr/) grant ANR-08-BLAN-0089. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Evolution
                Evolutionary Biology
                Organismal Evolution
                Microbial Evolution
                Genetics
                Gene Expression
                Protein Translation
                Microbiology
                Virology
                Viral Classification
                DNA viruses
                Viral Evolution
                Molecular Cell Biology
                Gene Expression
                Protein Translation

                Genetics
                Genetics

                Comments

                Comment on this article