1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melanocyte Chitosan/Gelatin Composite Fabrication with Human Outer Root Sheath-Derived Cells to Produce Pigment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hair follicle serves as a melanocyte reservoir for both hair and skin pigmentation. Melanocyte stem cells (MelSCs) and melanocyte progenitors reside in the bulge/sub-bulge region of the lower permanent portion of the hair follicle and play a vital role for repigmentation in vitiligo. It would be beneficial to isolate MelSCs in order to further study their function in pigmentary disorders; however, due to the lack of specific molecular surface markers, this has not yet been successfully accomplished in human hair follicles (HuHF). One potential method for MelSCs isolation is the “side population” technique, which is frequently used to isolate hematopoietic and tumor stem cells. In the present study, we decided to isolate HuHF MelSCs using “side population” to investigate their melanotic function. By analyzing mRNA expression of TYR, SOX10, and MITF, melanosome structure, and immunofluorescence with melanocyte-specific markers, we revealed that the SP-fraction contained MelSCs with an admixture of differentiated melanocytes. Furthermore, our in vivo studies indicated that differentiated SP-fraction cells, when fabricated into a cell-chitosan/gelatin composite, could transiently repopulate immunologically compromised mice skin to regain pigmentation. In summary, the SP technique is capable of isolating HuHF MelSCs that can potentially be used to repopulate skin for pigmentation.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding.

          The mammalian hair follicle is a complex 'mini-organ' thought to form only during development; loss of an adult follicle is considered permanent. However, the possibility that hair follicles develop de novo following wounding was raised in studies on rabbits, mice and even humans fifty years ago. Subsequently, these observations were generally discounted because definitive evidence for follicular neogenesis was not presented. Here we show that, after wounding, hair follicles form de novo in genetically normal adult mice. The regenerated hair follicles establish a stem cell population, express known molecular markers of follicle differentiation, produce a hair shaft and progress through all stages of the hair follicle cycle. Lineage analysis demonstrated that the nascent follicles arise from epithelial cells outside of the hair follicle stem cell niche, suggesting that epidermal cells in the wound assume a hair follicle stem cell phenotype. Inhibition of Wnt signalling after re-epithelialization completely abrogates this wounding-induced folliculogenesis, whereas overexpression of Wnt ligand in the epidermis increases the number of regenerated hair follicles. These remarkable regenerative capabilities of the adult support the notion that wounding induces an embryonic phenotype in skin, and that this provides a window for manipulation of hair follicle neogenesis by Wnt proteins. These findings suggest treatments for wounds, hair loss and other degenerative skin disorders.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The biology of hair follicles.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview.

              Active drug efflux transporters of the ATP binding cassette (ABC)-containing family of proteins have a major impact on the pharmacological behavior of most of the drugs in use today. Pharmacological properties affected by ABC transporters include the oral bioavailability, hepatobiliary, direct intestinal, and urinary excretion of drugs and drug-metabolites and -conjugates. Moreover, the penetration of drugs into a range of important pharmacological sanctuaries, such as brain, testis, and fetus, and the penetration into specific cell- and tissue compartments can be extensively limited by ABC transporters. These interactions with ABC transporters determine to a large extent the clinical usefulness, side effects and toxicity risks of drugs. Many other xenotoxins, (pre-)carcinogens and endogenous compounds are also influenced by the ABC transporters, with corresponding consequences for the well-being of the individual. We aim to provide an overview of properties of the mammalian ABC transporters known to mediate significant transport of clinically relevant drugs.
                Bookmark

                Author and article information

                Contributors
                luoxs71@126.com
                yj55569@hotmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 March 2019
                26 March 2019
                2019
                : 9
                : 5198
                Affiliations
                [1 ]ISNI 0000 0004 0368 8293, GRID grid.16821.3c, Department of Plastic and Reconstructive Surgery, , the Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, ; Shanghai, People’s Republic of China
                [2 ]Division of Plastic Surgery, Xinjiang Korla Bazhou People’s Hospital, Xinjiang, People’s Republic of China
                [3 ]ISNI 0000 0001 2171 9311, GRID grid.21107.35, Department of Transplantation, Johns Hopkins Hospital, , Johns Hopkins University School of Medicine, ; Baltimore, MD USA
                Author information
                http://orcid.org/0000-0003-0959-0011
                Article
                41611
                10.1038/s41598-019-41611-5
                6435804
                30914712
                cc80e5b5-1ef0-410b-86c8-43f213f5a567
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 July 2018
                : 11 March 2019
                Funding
                Funded by: National High-Tech R&D Program of China (SS2014AA020705)
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article