11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blockade of RBP-J-Mediated Notch Signaling Pathway Exacerbates Cardiac Remodeling after Infarction by Increasing Apoptosis in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ischemic heart disease (IHD) is the major cause of death in patients with cardiovascular disease. Cardiac remodeling is a common pathological change following myocardial infarction (MI), and cardiomyocyte apoptosis plays a key role in this change. Transcription factor recombination signal-binding protein-J (RBP-J)-mediated Notch signaling pathway has been implicated in several inherited cardiovascular diseases, including aortic valve diseases, but whether the RBP-J-mediated Notch signaling pathway plays a role in cardiomyocyte apoptosis after MI is unclear.

          Method

          We crossed RBP-J fl/fl mice and Myh6-Cre/Esr1 transgenic mice to delete RBP-J in vivo and to partly inhibit the canonical Notch signaling pathway. MI was induced in mice by permanent ligation of the left anterior descending coronary artery followed by the knockout of RBP-J. Cardiac function and morphology were assessed by echocardiography and histological analysis 4 weeks after infarction. In addition, the expression and regulation of apoptosis-related molecules were examined by real time PCR and western blot.

          Results

          RBP-J knockout decreased the survival rate and deteriorated post-MI remodeling and function in mice, and this effect was associated with increased cardiomyocyte apoptosis. The potential mechanisms might be related to the downregulated expression of bcl-2, upregulated expression of bax, and cleaved-caspase 3 to exacerbate cardiomyocyte apoptosis.

          Conclusion

          These findings show that the RBP-J-mediated Notch signaling pathway in cardiomyocytes limits ventricular remodeling and improves cardiac function after MI. The RBP-J-mediated Notch signaling pathway has a protective role in cardiomyocyte apoptosis following cardiac injury.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision.

            The transcription factor recombination signal binding protein-J (RBP-J) functions immediately downstream of the cell surface receptor Notch and mediates transcriptional activation by the intracellular domain of all four kinds of Notch receptors. To investigate the function of RBP-J, we introduced loxP sites on both sides of the RBP-J exons encoding its DNA binding domain. Mice bearing the loxP-flanked RBP-J alleles, RBP-J(f/f), were mated with Mx-Cre transgenic mice and deletional mutation of the RBP-J gene in adult mice was induced by injection of the IFN-alpha inducer poly(I)-poly(C). Here we show that inactivation of RBP-J in bone marrow resulted in a block of T cell development at the earliest stage and increase of B cell development in the thymus. Lymphoid progenitors deficient in RBP-J differentiate into B but not T cells when cultured in 2'-deoxyguanosine-treated fetal thymic lobes by hanging-drop fetal thymus organ culture. Competitive repopulation assay also revealed cell autonomous deficiency of T cell development from bone marrow of RBP-J knockout mouse. Myeloid and B lineage differentiation appears normal in the bone marrow of RBP-J-inactivated mice. These results suggest that RBP-J, probably by mediating Notch signaling, controls T versus B cell fate decision in lymphoid progenitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation of Notch-mediated protective signaling in the myocardium.

              The Notch network regulates multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. These processes are regulated via Notch-mediated activity that involves hepatocyte growth factor (HGF)/c-Met receptor and phosphatidylinositol 3-kinase/Akt signaling cascades. The impact of HGF on Notch signaling was assessed following myocardial infarction as well as in cultured cardiomyocytes. Notch1 is activated in border zone cardiomyocytes coincident with nuclear c-Met following infarction. Intramyocardial injection of HGF enhances Notch1 and Akt activation in adult mouse myocardium. Corroborating evidence in cultured cardiomyocytes shows treatment with HGF or insulin increases levels of Notch effector Hes1 in immunoblots, whereas overexpression of activated Notch intracellular domain prompts a 3-fold increase in phosphorylated Akt. Infarcted hearts injected with adenoviral vector expressing Notch intracellular domain treatment exhibit improved hemodynamic function in comparison with control mice after 4 weeks, implicating Notch signaling in a cardioprotective role following cardiac injury. These results indicate Notch activation in cardiomyocytes is mediated through c-Met and Akt survival signaling pathways, and Notch1 signaling in turn enhances Akt activity. This mutually supportive crosstalk suggests a positive survival feedback mechanism between Notch and Akt signaling in adult myocardium following injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                3 July 2018
                : 2018
                : 5207031
                Affiliations
                1Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
                2Medical School of Southeast University, Nanjing, China
                3Department of Cardiovascular Medicine, Georgia Regents University, USA
                Author notes

                Academic Editor: Thomas A. Wilson

                Author information
                http://orcid.org/0000-0002-6801-9088
                http://orcid.org/0000-0002-8372-1545
                http://orcid.org/0000-0003-4332-3013
                http://orcid.org/0000-0002-5754-9139
                Article
                10.1155/2018/5207031
                6051300
                30065940
                cd087e21-d656-4623-8713-7bafa3d0172d
                Copyright © 2018 Yanru He et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 January 2018
                : 1 April 2018
                : 18 April 2018
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81270203
                Award ID: 81270204
                Funded by: Natural Science Foundation of Jiangsu Province
                Award ID: BK20161436
                Categories
                Research Article

                Comments

                Comment on this article