1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Biocompatibility of Multi-Layered, 3D Bio-Printed Artificial Vessels Composed of Autologous Mesenchymal Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificial vessels capable of long-term patency are essential clinical tools in vascular surgery that involves small vessels. On-going attempts to develop artificial vessels that complements restenosis have not been entirely successful. Here, we report on the fabrication of small-sized artificial vessels using a three-dimensional bio-printer. The fabrication employed biodegradable polycaprolactone and autologous MSCs harvested from the bone-marrow of canines. The MSCs were cultured and differentiated into endothelial-like cells. After confirming differentiation, artificial vessels comprising three-layers were constructed and implanted into the arteries of canines. The autologous MSCs printed on artificial vessels (cell-derived group) maintained a 64.3% patency (9 of 14 grafts) compared with artificial vessels without cells (control group, 54.5% patency (6 of 11 grafts)). The cell-derived vessels (61.9 cells/mm 2 ± 14.3) had more endothelial cells on their inner surfaces than the control vessels (21 cells/mm 2 ± 11.3). Moreover, the control vessels showed acute inflammation on the porous structures of the implanted artificial vessels, whereas the cell-derived vessels exhibited fibrinous clots with little to no inflammation. We concluded that the minimal rejection of these artificial vessels by the immune system was due to the use of autologous MSCs. We anticipate that this study will be of value in the field of tissue-engineering in clinical practice.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Decellularization of tissues and organs.

          Decellularized tissues and organs have been successfully used in a variety of tissue engineering/regenerative medicine applications, and the decellularization methods used vary as widely as the tissues and organs of interest. The efficiency of cell removal from a tissue is dependent on the origin of the tissue and the specific physical, chemical, and enzymatic methods that are used. Each of these treatments affect the biochemical composition, tissue ultrastructure, and mechanical behavior of the remaining extracellular matrix (ECM) scaffold, which in turn, affect the host response to the material. Herein, the most commonly used decellularization methods are described, and consideration give to the effects of these methods upon the biologic scaffold material.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein release from alginate matrices.

            W Gombotz (1998)
            There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally occurring biopolymer extracted from brown algae (kelp), has several unique properties that have enabled it to be used as a matrix for the entrapment and/or delivery of a variety of biological agents. Alginate polymers are a family of linear unbranched polysaccharides which contain varying amounts of 1,4'-linked beta-D-mannuronic acid and alpha-L-guluronic acid residues. The residues may vary widely in composition and sequence and are arranged in a pattern of blocks along the chain. Alginate can be ionically crosslinked by the addition of divalent cations in aqueous solution. The relatively mild gelation process has enabled not only proteins, but cells and DNA to be incorporated into alginate matrices with retention of full biological activity. Furthermore, by selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled. Gels of different morphologies can be prepared including large block matrices, large beads (>1 mm in diameter) and microbeads (<0.2 mm in diameter). In situ gelling systems have also been made by the application of alginate to the cornea, or on the surfaces of wounds. Alginate is a bioadhesive polymer which can be advantageous for the site specific delivery to mucosal tissues. All of these properties, in addition to the nonimmunogenicity of alginate, have led to an increased use of this polymer as a protein delivery system. This review will discuss the chemistry of alginate, its gelation mechanisms, and the physical properties of alginate gels. Emphasis will be placed on applications in which biomolecules have been incorporated into and released from alginate systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

              Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                02 March 2020
                March 2020
                : 12
                : 3
                : 538
                Affiliations
                [1 ]Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; nurjih83@ 123456yuhs.ac (E.H.J.); JHKIM0907@ 123456yuhs.ac (J.-H.K.); VET1982@ 123456yuhs.ac (D.-H.K.)
                [2 ]Department of Nature-Inspired Nanoconvergence System, Korea institute of Machinery and Materials (KIMM), Daejeon 34103, Korea; meek@ 123456kimm.re.kr
                Author notes
                [* ]Correspondence: ynyoun@ 123456yuhs.ac ; Tel.: +82-2-2228-8487
                Article
                polymers-12-00538
                10.3390/polym12030538
                7182803
                32131428
                cd1ded5e-fbb0-4991-acb7-7b6f2074a412
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 January 2020
                : 16 February 2020
                Categories
                Article

                bioprinting,animal models,blood vessel,mesenchymal stem cells,growth factors

                Comments

                Comment on this article