0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.

          Related collections

          Most cited references345

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of Antibiotic Resistance.

          Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have not only emerged in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic "attack" is the prime example of bacterial adaptation and the pinnacle of evolution. "Survival of the fittest" is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material, or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and to devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice, providing specific examples in relevant bacterial pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety

            The use of herbal medicinal products and supplements has increased tremendously over the past three decades with not less than 80% of people worldwide relying on them for some part of primary healthcare. Although therapies involving these agents have shown promising potential with the efficacy of a good number of herbal products clearly established, many of them remain untested and their use are either poorly monitored or not even monitored at all. The consequence of this is an inadequate knowledge of their mode of action, potential adverse reactions, contraindications, and interactions with existing orthodox pharmaceuticals and functional foods to promote both safe and rational use of these agents. Since safety continues to be a major issue with the use of herbal remedies, it becomes imperative, therefore, that relevant regulatory authorities put in place appropriate measures to protect public health by ensuring that all herbal medicines are safe and of suitable quality. This review discusses toxicity-related issues and major safety concerns arising from the use of herbal medicinal products and also highlights some important challenges associated with effective monitoring of their safety.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics: past, present and future

              The first antibiotic, salvarsan, was deployed in 1910. In just over 100 years antibiotics have drastically changed modern medicine and extended the average human lifespan by 23 years. The discovery of penicillin in 1928 started the golden age of natural product antibiotic discovery that peaked in the mid-1950s. Since then, a gradual decline in antibiotic discovery and development and the evolution of drug resistance in many human pathogens has led to the current antimicrobial resistance crisis. Here we give an overview of the history of antibiotic discovery, the major classes of antibiotics and where they come from. We argue that the future of antibiotic discovery looks bright as new technologies such as genome mining and editing are deployed to discover new natural products with diverse bioactivities. We also report on the current state of antibiotic development, with 45 drugs currently going through the clinical trials pipeline, including several new classes with novel modes of action that are in phase 3 clinical trials. Overall, there are promising signs for antibiotic discovery, but changes in financial models are required to translate scientific advances into clinically approved antibiotics.
                Bookmark

                Author and article information

                Contributors
                Journal
                PHARH2
                Pharmaceuticals
                Pharmaceuticals
                MDPI AG
                1424-8247
                June 2023
                June 15 2023
                : 16
                : 6
                : 881
                Article
                10.3390/ph16060881
                10302623
                37375828
                cd443d13-6686-4d5e-b7aa-f857998800e7
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article