7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microplastics detected in cirrhotic liver tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          The contamination of ecosystem compartments by microplastics (MPs) is an ubiquitous problem. MPs have been observed in mice tissues, and recently in human blood, stool and placenta. However, two aspects remain unclear: whether MPs accumulate in peripheral organs, specifically in the liver, and if liver cirrhosis favours this process. We aimed to examine human liver tissue samples to determine whether MPs accumulate in the liver.

          Methods

          This proof-of-concept case series, conducted in Germany, Europe, analyzed tissue samples of 6 patients with liver cirrhosis and 5 individuals without underlying liver disease. A total of 17 samples (11 liver, 3 kidney and 3 spleen samples) were analyzed according to the final protocol. A reliable method for detection of MP particles from 4 to 30 µm in human tissue was developed. Chemical digestion of tissue samples, staining with Nile red, subsequent fluorescent microscopy and Raman spectroscopy were performed. Morphology, size and composition of MP polymers were assessed.

          Findings

          Considering the limit of detection, all liver, kidney and spleen samples from patients without underlying liver disease tested negative for MPs. In contrast, MP concentrations in cirrhotic liver tissues tested positive and showed significantly higher concentrations compared to liver samples of individuals without underlying liver disease. Six different microplastic polymers ranging from 4 to 30 µm in size were detected.

          Interpretation

          This proof-of-concept case series assessed the presence of MPs in human liver tissue and found six different MP polymers in the liver of individuals with liver cirrhosis, but not in those without underlying liver disease. Future studies are needed to evaluate whether hepatic MP accumulation represents a potential cause in the pathogenesis of fibrosis, or a consequence of cirrhosis and portal hypertension.

          Funding

          No funding was received for conducting this investigator driven study.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Plastic and human health: a micro issue?

          Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to bioaccumulation, particle toxicity, and chemical and microbial contaminants were critically examined. Whilst this is an emerging field, complimentary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may bioaccumulate and exert localised particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localised leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect which could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Whilst there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microplastics in freshwaters and drinking water: Critical review and assessment of data quality

            Microplastics have recently been detected in drinking water as well as in drinking water sources. This presence has triggered discussions on possible implications for human health. However, there have been questions regarding the quality of these occurrence studies since there are no standard sampling, extraction and identification methods for microplastics. Accordingly, we assessed the quality of fifty studies researching microplastics in drinking water and in its major freshwater sources. This includes an assessment of microplastic occurrence data from river and lake water, groundwater, tap water and bottled drinking water. Studies of occurrence in wastewater were also reviewed. We review and propose best practices to sample, extract and detect microplastics and provide a quantitative quality assessment of studies reporting microplastic concentrations. Further, we summarize the findings related to microplastic concentrations, polymer types and particle shapes. Microplastics are frequently present in freshwaters and drinking water, and number concentrations spanned ten orders of magnitude (1 × 10−2 to 108 #/m3) across individual samples and water types. However, only four out of 50 studies received positive scores for all proposed quality criteria, implying there is a significant need to improve quality assurance of microplastic sampling and analysis in water samples. The order in globally detected polymers in these studies is PE ≈ PP > PS > PVC > PET, which probably reflects the global plastic demand and a higher tendency for PVC and PET to settle as a result of their higher densities. Fragments, fibres, film, foam and pellets were the most frequently reported shapes. We conclude that more high quality data is needed on the occurrence of microplastics in drinking water, to better understand potential exposure and to inform human health risk assessments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Limit of blank, limit of detection and limit of quantitation.

              * Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration of a measurand that can be reliably measured by an analytical procedure. * LoB is the highest apparent analyte concentration expected to be found when replicates of a blank sample containing no analyte are tested. LoB = mean(blank) + 1.645(SD(blank)). * LoD is the lowest analyte concentration likely to be reliably distinguished from the LoB and at which detection is feasible. LoD is determined by utilising both the measured LoB and test replicates of a sample known to contain a low concentration of analyte. * LoD = LoB + 1.645(SD (low concentration sample)). * LoQ is the lowest concentration at which the analyte can not only be reliably detected but at which some predefined goals for bias and imprecision are met. The LoQ may be equivalent to the LoD or it could be at a much higher concentration.
                Bookmark

                Author and article information

                Contributors
                Journal
                eBioMedicine
                EBioMedicine
                eBioMedicine
                Elsevier
                2352-3964
                11 July 2022
                August 2022
                11 July 2022
                : 82
                : 104147
                Affiliations
                [a ]I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                [b ]Center for Earth System Research and Sustainability (CEN), University of Hamburg, Hamburg, Germany
                [c ]Department of Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                [d ]Institute of Legal Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
                Author notes
                [* ]Corresponding author at: I. Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Martinistraße 42, 20246 Hamburg, Germany. t.horvatits@ 123456uke.de
                [** ]Corresponding author at: Center for Earth System Research and Sustainability (CEN), University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany elke.fischer@ 123456uni-hamburg.de
                Article
                S2352-3964(22)00328-0 104147
                10.1016/j.ebiom.2022.104147
                9386716
                35835713
                cd8bd03e-acfb-43c9-82d5-2903264aa4c4
                © 2022 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 9 April 2022
                : 22 June 2022
                : 22 June 2022
                Categories
                Articles

                microplastics,human tissue,liver cirrhosis,raman spectroscopy,mps, microplastics,ps, polystyrene,sop, standard operating procedure,meld, model for end-stage liver disease,pet, polyethylene terephthalate,pvc, polyvinyl chloride,pmma, polymethyl methacrylate,pom, polyoxymethylene,pp, polypropylene,sd, standard deviation,sbp, spontaneous bacterial peritonitis

                Comments

                Comment on this article