45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanosensors in osteocytes

      review-article
      , , ,
      Bone Research
      Nature Publishing Group UK
      Bone quality and biomechanics, Osteoporosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Fracture healing under healthy and inflammatory conditions.

          Optimal fracture treatment requires knowledge of the complex physiological process of bone healing. The course of bone healing is mainly influenced by fracture fixation stability (biomechanics) and the blood supply to the healing site (revascularization after trauma). The repair process proceeds via a characteristic sequence of events, described as the inflammatory, repair and remodeling phases. An inflammatory reaction involving immune cells and molecular factors is activated immediately in response to tissue damage and is thought to initiate the repair cascade. Immune cells also have a major role in the repair phase, exhibiting important crosstalk with bone cells. After bony bridging of the fragments, a slow remodeling process eventually leads to the reconstitution of the original bone structure. Systemic inflammation, as observed in patients with rheumatoid arthritis, diabetes mellitus, multiple trauma or sepsis, can increase fracture healing time and the rate of complications, including non-unions. In addition, evidence suggests that insufficient biomechanical conditions within the fracture zone can influence early local inflammation and impair bone healing. In this Review, we discuss the main factors that influence fracture healing, with particular emphasis on the role of inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of bone mass by Wnt signaling.

            Wnt proteins are a family of secreted proteins that regulate many aspects of cell growth, differentiation, function, and death. Considerable progress has been made in our understanding of the molecular links between Wnt signaling and bone development and remodeling since initial reports that mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) are causally linked to alterations in human bone mass. Of the pathways activated by Wnts, it is signaling through the canonical (i.e., Wnt/beta-catenin) pathway that increases bone mass through a number of mechanisms including renewal of stem cells, stimulation of preosteoblast replication, induction of osteoblastogenesis, and inhibition of osteoblast and osteocyte apoptosis. This pathway is an enticing target for developing drugs to battle skeletal diseases as Wnt/beta-catenin signaling is composed of a series of molecular interactions that offer potential places for pharmacological intervention. In considering opportunities for anabolic drug discovery in this area, one must consider multiple factors, including (a) the roles of Wnt signaling for development, remodeling, and pathology of bone; (b) how pharmacological interventions that target this pathway may specifically treat osteoporosis and other aspects of skeletal health; and (c) whether the targets within this pathway are amenable to drug intervention. In this Review we discuss the current understanding of this pathway in terms of bone biology and assess whether targeting this pathway might yield novel therapeutics to treat typical bone disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis.

              The adult skeleton regenerates by temporary cellular structures that comprise teams of juxtaposed osteoclasts and osteoblasts and replace periodically old bone with new. A considerable body of evidence accumulated during the last decade has shown that the rate of genesis of these two highly specialized cell types, as well as the prevalence of their apoptosis, is essential for the maintenance of bone homeostasis; and that common metabolic bone disorders such as osteoporosis result largely from a derangement in the birth or death of these cells. The purpose of this article is 3-fold: 1) to review the role and the molecular mechanism of action of regulatory molecules, such as cytokines and hormones, in osteoclast and osteoblast birth and apoptosis; 2) to review the evidence for the contribution of changes in bone cell birth or death to the pathogenesis of the most common forms of osteoporosis; and 3) to highlight the implications of bone cell birth and death for a better understanding of the mechanism of action and efficacy of present and future pharmacotherapeutic agents for osteoporosis.
                Bookmark

                Author and article information

                Contributors
                caohl@sustech.edu.cn
                xiaogz@sustech.edu.cn
                Journal
                Bone Res
                Bone Res
                Bone Research
                Nature Publishing Group UK (London )
                2095-4700
                2095-6231
                8 June 2020
                8 June 2020
                2020
                : 8
                : 23
                Affiliations
                GRID grid.263817.9, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, , Southern University of Science and Technology, ; Shenzhen, 518055 China
                Article
                99
                10.1038/s41413-020-0099-y
                7280204
                32550039
                cd97d141-6082-46f3-825e-d4e7e8a5069e
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 January 2020
                : 7 April 2020
                : 17 April 2020
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                bone quality and biomechanics,osteoporosis
                bone quality and biomechanics, osteoporosis

                Comments

                Comment on this article