20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

          Abstract

          Rising seas are a legacy of present and future climate change. Here the authors show that under the Paris Agreement, emissions in the next decades have a strong influence on the amount of sea level rise in the centuries to come, with the uncertainty dominated by ice-sheet contributions.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

          More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Global Carbon Budget 2016

            Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry ( E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC ), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink ( S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink ( S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1 σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006–2015), E FF was 9.3 ± 0.5 GtC yr −1 , E LUC 1.0 ± 0.5 GtC yr −1 , G ATM 4.5 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 3.1 ± 0.9 GtC yr −1 . For year 2015 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr −1 , showing a slowdown in growth of these emissions compared to the average growth of 1.8 % yr −1 that took place during 2006–2015. Also, for 2015, E LUC was 1.3 ± 0.5 GtC yr −1 , G ATM was 6.3 ± 0.2 GtC yr −1 , S OCEAN was 3.0 ± 0.5 GtC yr −1 , and S LAND was 1.9 ± 0.9 GtC yr −1 . G ATM was higher in 2015 compared to the past decade (2006–2015), reflecting a smaller S LAND for that year. The global atmospheric CO 2 concentration reached 399.4 ± 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E FF with +0.2 % (range of −1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E FF in 2016, the growth rate in atmospheric CO 2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink ( S LAND ) in response to El Niño conditions of 2015–2016. From this projection of E FF and assumed constant E LUC for 2016, cumulative emissions of CO 2 will reach 565 ± 55 GtC (2075 ± 205 GtCO 2 ) for 1870–2016, about 75 % from E FF and 25 % from E LUC . This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center ( doi:10.3334/CDIAC/GCP_2016 ).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica.

              Resting atop a deep marine basin, the West Antarctic Ice Sheet has long been considered prone to instability. Using a numerical model, we investigated the sensitivity of Thwaites Glacier to ocean melt and whether its unstable retreat is already under way. Our model reproduces observed losses when forced with ocean melt comparable to estimates. Simulated losses are moderate ( 1 mm per year of sea-level rise) collapse in the different simulations within the range of 200 to 900 years. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                matthias.mengel@pik-potsdam.de
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                20 February 2018
                20 February 2018
                2018
                : 9
                : 601
                Affiliations
                [1 ]Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, D-14412 Potsdam, Germany
                [2 ]ISNI 0000 0001 2179 088X, GRID grid.1008.9, Australian-German College of Climate and Energy Transitions, , The University of Melbourne, ; Parkville, VIC 3010 Australia
                [3 ]ISNI 0000 0001 1955 9478, GRID grid.75276.31, ENE Program, , International Institute for Applied Systems Analysis (IIASA), ; Schlossplatz 1, Laxenburg, A-2361 Austria
                [4 ]ISNI 0000 0001 2156 2780, GRID grid.5801.c, Institute for Atmospheric and Climate Science, , ETH Zurich, ; Universitätstrasse 16, Zurich, 8006 Switzerland
                [5 ]ISNI 0000 0004 1936 8948, GRID grid.4991.5, School of Geography and the Environment, , Oxford University, ; South Parks Road, OX1 3QY Oxford, UK
                [6 ]Climate Analytics, Ritterstr. 3, 10969 Berlin, Germany
                [7 ]ISNI 0000 0001 2248 7639, GRID grid.7468.d, Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), , Humboldt-Universität zu Berlin, ; 10969 Berlin, Germany
                Author information
                http://orcid.org/0000-0001-6724-9685
                http://orcid.org/0000-0003-1378-3377
                http://orcid.org/0000-0003-2056-9061
                http://orcid.org/0000-0001-8471-848X
                Article
                2985
                10.1038/s41467-018-02985-8
                5820313
                29463787
                cda216ad-5e10-4f51-b605-a4b7291ea177
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 6 January 2017
                : 10 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article