16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Histone demethylase KDM5D upregulation drives sex differences in colon cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Colorectal cancer

          Several decades ago, colorectal cancer was infrequently diagnosed. Nowadays, it is the world's fourth most deadly cancer with almost 900 000 deaths annually. Besides an ageing population and dietary habits of high-income countries, unfavourable risk factors such as obesity, lack of physical exercise, and smoking increase the risk of colorectal cancer. Advancements in pathophysiological understanding have increased the array of treatment options for local and advanced disease leading to individual treatment plans. Treatments include endoscopic and surgical local excision, downstaging preoperative radiotherapy and systemic therapy, extensive surgery for locoregional and metastatic disease, local ablative therapies for metastases, and palliative chemotherapy, targeted therapy, and immunotherapy. Although these new treatment options have doubled overall survival for advanced disease to 3 years, survival is still best for those with non-metastasised disease. As the disease only becomes symptomatic at an advanced stage, worldwide organised screening programmes are being implemented, which aim to increase early detection and reduce morbidity and mortality from colorectal cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Consensus Molecular Subtypes of Colorectal Cancer

            Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression–based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC – with clear biological interpretability – and the basis for future clinical stratification and subtype–based targeted interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The genomic landscapes of human breast and colorectal cancers.

              Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                June 21 2023
                Article
                10.1038/s41586-023-06254-7
                37344599
                cda4c7fc-87f2-4e79-a600-7842d619848f
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article