12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L −1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L −1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F 0F 1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp70 chaperones: Cellular functions and molecular mechanism

          Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of protein subcellular localization.

            Because the protein's function is usually related to its subcellular localization, the ability to predict subcellular localization directly from protein sequences will be useful for inferring protein functions. Recent years have seen a surging interest in the development of novel computational tools to predict subcellular localization. At present, these approaches, based on a wide range of algorithms, have achieved varying degrees of success for specific organisms and for certain localization categories. A number of authors have noticed that sequence similarity is useful in predicting subcellular localization. For example, Nair and Rost (Protein Sci 2002;11:2836-2847) have carried out extensive analysis of the relation between sequence similarity and identity in subcellular localization, and have found a close relationship between them above a certain similarity threshold. However, many existing benchmark data sets used for the prediction accuracy assessment contain highly homologous sequences-some data sets comprising sequences up to 80-90% sequence identity. Using these benchmark test data will surely lead to overestimation of the performance of the methods considered. Here, we develop an approach based on a two-level support vector machine (SVM) system: the first level comprises a number of SVM classifiers, each based on a specific type of feature vectors derived from sequences; the second level SVM classifier functions as the jury machine to generate the probability distribution of decisions for possible localizations. We compare our approach with a global sequence alignment approach and other existing approaches for two benchmark data sets-one comprising prokaryotic sequences and the other eukaryotic sequences. Furthermore, we carried out all-against-all sequence alignment for several data sets to investigate the relationship between sequence homology and subcellular localization. Our results, which are consistent with previous studies, indicate that the homology search approach performs well down to 30% sequence identity, although its performance deteriorates considerably for sequences sharing lower sequence identity. A data set of high homology levels will undoubtedly lead to biased assessment of the performances of the predictive approaches-especially those relying on homology search or sequence annotations. Our two-level classification system based on SVM does not rely on homology search; therefore, its performance remains relatively unaffected by sequence homology. When compared with other approaches, our approach performed significantly better. Furthermore, we also develop a practical hybrid method, which combines the two-level SVM classifier and the homology search method, as a general tool for the sequence annotation of subcellular localization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein structure homology modeling using SWISS-MODEL workspace.

              Homology modeling aims to build three-dimensional protein structure models using experimentally determined structures of related family members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert system. For a given target protein, a library of experimental protein structures is searched to identify suitable templates. On the basis of a sequence alignment between the target protein and the template structure, a three-dimensional model for the target protein is generated. Model quality assessment tools are used to estimate the reliability of the resulting models. Homology modeling is currently the most accurate computational method to generate reliable structural models and is routinely used in many biological applications. Typically, the computational effort for a modeling project is less than 2 h. However, this does not include the time required for visualization and interpretation of the model, which may vary depending on personal experience working with protein structures.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                05 January 2017
                2016
                : 7
                : 2132
                Affiliations
                [1] 1Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
                [2] 2Facultad de Ciencias Biologicas, Universidad Andres Bello Santiago, Chile
                [3] 3Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida Santiago, Chile
                [4] 4School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
                Author notes

                Edited by: Axel Schippers, Federal Institute for Geosciences and Natural Resources, Germany

                Reviewed by: Sabrina Hedrich, Federal Institute for Geosciences and Natural Resources, Germany; Cecilia Susana Demergasso, Catholic University of the North, Chile

                *Correspondence: Elizabeth L. J. Watkin e.watkin@ 123456curtin.edu.au

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.02132
                5216662
                28111571
                cdb964ca-5335-418d-b6bd-f9940b4eefd6
                Copyright © 2017 Dopson, Holmes, Lazcano, McCredden, Bryan, Mulroney, Steuart, Jackaman and Watkin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 September 2016
                : 19 December 2016
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 97, Pages: 16, Words: 11255
                Funding
                Funded by: Ian Potter Foundation 10.13039/501100001047
                Award ID: 20120541
                Funded by: Fondo Nacional de Desarrollo Científico y Tecnológico 10.13039/501100002850
                Award ID: 1130683
                Funded by: Comisión Nacional de Investigación Científica y Tecnológica 10.13039/501100002848
                Award ID: CCTE PFB16
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                salt,acidophile,biomining,bioleaching,proteomics,pyrite,chalcopyrite,environmental stress

                Comments

                Comment on this article