88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      mDia1-3 in mammalian filopodia

      review-article
      , *
      Communicative & Integrative Biology
      Landes Bioscience
      formins, mDia, Rho GTPases, filopodia, actin, cell morphology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          mDia proteins are members of the formin family of actin nucleating proteins that polymerize linear actin filaments. Such filaments form the core of thin, tubular, membrane-bound cell surface protrusions known as filopodia, which are a major feature of mammalian cell morphology. Filopodia are dynamic structures that help cells sense environmental cues, and play a role in cell migration, axon guidance, angiogenesis and other processes. RhoGTPases bind to and control the activity of mDia proteins, and several other binding partners of the three mDia1 isoforms—mDia1, mDia2 and mDia3—have been documented. Two independent pathways controlling mammalian filopodium formation have emerged, with one driven by the RhoGTPase Cdc42, and the other by Rif. While mDia2 has been the main formin implicated in forming filopodia, mDia1 has recently surfaced as the key formin utilized by both the Cdc42 and Rif pathways to drive filopodial protrusion.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Stress fibers are generated by two distinct actin assembly mechanisms in motile cells

          Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)–driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association–dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cooperation between mDia1 and ROCK in Rho-induced actin reorganization.

            The small GTPase Rho induces the formation of actin stress fibres and mediates the formation of diverse actin structures. However, it remains unclear how Rho regulates its effectors to elicit such functions. Here we show that GTP-bound Rho activates its effector mDia1 by disrupting mDia1's intramolecular interactions. Active mDia1 induces the formation of thin actin stress fibres, which are disorganized in the absence of activity of the Rho-associated kinase ROCK. Moreover, active mDia1 transforms ROCK-induced condensed actin fibres into structures reminiscent of Rho-induced stress fibres. Thus mDia1 and ROCK work concurrently during Rho-induced stress-fibre formation. Intriguingly, mDia1 and ROCK, depending on the balance of the two activities, induce actin fibres of various thicknesses and densities. Thus Rho may induce the formation of different actin structures affected by the balance between mDia1 and ROCK signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of the assembly of ATP- and ADP-actin by formins and profilin.

              Formin proteins nucleate actin filaments, remaining processively associated with the fast-growing barbed ends. Although formins possess common features, the diversity of functions and biochemical activities raised the possibility that formins differ in fundamental ways. Further, a recent study suggested that profilin and ATP hydrolysis are both required for processive elongation mediated by the formin mDia1. We used total internal reflection fluorescence microscopy to observe directly individual actin filament polymerization in the presence of two mammalian formins (mDia1 and mDia2) and two yeast formins (Bni1p and Cdc12p). We show that these diverse formins have the same basic properties: movement is processive in the absence or presence of profilin; profilin accelerates elongation; and actin ATP hydrolysis is not required for processivity. These results suggest that diverse formins are mechanistically similar, but the rates of particular assembly steps vary.
                Bookmark

                Author and article information

                Journal
                Commun Integr Biol
                Commun Integr Biol
                CIB
                Communicative & Integrative Biology
                Landes Bioscience
                1942-0889
                01 July 2012
                01 July 2012
                : 5
                : 4
                : 340-344
                Affiliations
                Institute of Medical Biology; Singapore; Immunos, Singapore
                Author notes
                [* ]Correspondence to: Sohail Ahmed, Email: sohail.ahmed@ 123456imb.a-star.edu.sg
                Article
                2012CIB0035 20214
                10.4161/cib.20214
                3460838
                23060957
                cdc650e3-26f3-47d4-b605-10c17190dc02
                Copyright © 2012 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                Categories
                Mini Review

                Molecular biology
                cell morphology,mdia,rho gtpases,actin,formins,filopodia
                Molecular biology
                cell morphology, mdia, rho gtpases, actin, formins, filopodia

                Comments

                Comment on this article