Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Metformin is a commonly used drug for the treatment of diabetes. Accumulating evidence suggests that it exerts anti-tumor effects in many cancers, including multiple myeloma (MM); however, the underlying molecular mechanisms have not been clearly elucidated.

          Methods

          The anti-myeloma effects of metformin were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo NOD-SCID murine xenograft MM model. Cell viability was assessed with CCK8 and cell proliferation was measured by EdU incorporation assay. Cell cycle distribution and apoptosis were examined by flow cytometry. Transmission electron microscopy was used to visualized autophagosomes. Activation of AMPK and inhibition of mTORC1/C2 pathways was assessed by Western blot analysis. RPMI8226 cells and U266 cell lines with AMPK knockdown were generated by transfection with small interfering RNA targeting the AMPK-α1 and α2 subunits using Lipofectamine 2000 reagent.

          Results

          Metformin effectively inhibited the proliferation of MM cell lines, an effect that was associated with the induction of autophagy and G0/G1 cell cycle arrest, but not apoptosis. Metformin activated AMPK and repressed both mTORC1 and mTORC2 signaling pathways in myeloma cells as well as downstream molecular signaling pathways, such as p-4EBP1 and p-AKT. AMPK activation resulted in direct phosphorylation and activation of tuberous sclerosis complex 2 (TSC2), leading to inhibition of the mammalian target of rapamycin (mTOR). In addition, metformin inhibited myeloma cell growth in an AMPK-dependent manner. The xenograft mouse model further confirmed that metformin inhibited tumor growth by upregulation of AMPK and downregulation of mTOR.

          Conclusions

          Metformin inhibits the proliferation of myeloma cells by inducing autophagy and cell-cycle arrest. Our results suggest that the molecular mechanism involves dual repression of mTORC1 and mTORC2 pathways via AMPK activation. Our study provides a theoretical basis for the development of novel strategies for the treatment of MM using metformin as an already approved and safe drug.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          The LKB1 tumor suppressor negatively regulates mTOR signaling.

          Germline mutations in LKB1, TSC2, or PTEN tumor suppressor genes result in hamartomatous syndromes with shared tumor biological features. The recent observations of LKB1-mediated activation of AMP-activated protein kinase (AMPK) and AMPK inhibition of mTOR through TSC2 prompted us to examine the biochemical and biological relationship between LKB1 and mTOR regulation. Here, we report that LKB1 is required for repression of mTOR under low ATP conditions in cultured cells in an AMPK- and TSC2-dependent manner, and that Lkb1 null MEFs and the hamartomatous gastrointestinal polyps from Lkb1 mutant mice show elevated signaling downstream of mTOR. These findings position aberrant mTOR activation at the nexus of these germline neoplastic conditions and suggest the use of mTOR inhibitors in the treatment of Peutz-Jeghers syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A complex interplay between Akt, TSC2 and the two mTOR complexes.

            Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian target of rapamycin) complex] 1, thereby activating mTORC1 in response to growth factors. Through negative-feedback mechanisms, mTORC1 activity inhibits growth factor stimulation of PI3K. This is particularly evident in cells and tumours lacking the TSC1-TSC2 complex, where Akt signalling is severely attenuated due, at least in part, to constitutive activation of mTORC1. An additional level of complexity in the relationship between Akt and the TSC1-TSC2 complex has recently been uncovered. The growth-factor-stimulated kinase activity of mTORC2 [also known as the mTOR-rictor (rapamycin-insensitive companion of mTOR) complex], which normally enhances Akt signalling by phosphorylating its hydrophobic motif (Ser(473)), was found to be defective in cells lacking the TSC1-TSC2 complex. This effect on mTORC2 can be separated from the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1. The present review discusses our current understanding of the increasingly complex functional interactions between Akt, the TSC1-TSC2 complex and mTOR, which are fundamentally important players in a large variety of human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex.

              Metformin is the most widely prescribed drug for the treatment of type 2 diabetes. However, knowledge of the full effects of metformin on biochemical pathways and processes in its primary target tissue, the liver, is limited. One established effect of metformin is to decrease cellular energy levels. The AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are key regulators of metabolism that are respectively activated and inhibited in acute response to cellular energy depletion. Here we show that metformin robustly inhibits mTORC1 in mouse liver tissue and primary hepatocytes. Using mouse genetics, we find that at the lowest concentrations of metformin that inhibit hepatic mTORC1 signaling, this inhibition is dependent on AMPK and the tuberous sclerosis complex (TSC) protein complex (TSC complex). Finally, we show that metformin profoundly inhibits hepatocyte protein synthesis in a manner that is largely dependent on its ability to suppress mTORC1 signaling.
                Bookmark

                Author and article information

                Contributors
                yanhua_candy@163.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                20 March 2018
                20 March 2018
                2018
                : 37
                : 63
                Affiliations
                ISNI 0000 0004 1760 6738, GRID grid.412277.5, Department of hematology, , Rui Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, ; Shanghai, No. 197 Rui-Jin Er Road, Shanghai, 200025 China
                Article
                731
                10.1186/s13046-018-0731-5
                5859411
                29554968
                cddb556e-5f9c-4769-b2e3-bc0f51d93f51
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 October 2017
                : 10 March 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81302038
                Award ID: 81600155
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Oncology & Radiotherapy
                myeloma,metformin,ampk,mtor,autophagy,cell cycle arrest
                Oncology & Radiotherapy
                myeloma, metformin, ampk, mtor, autophagy, cell cycle arrest

                Comments

                Comment on this article